
The Amateur
Computerist

Winter/Spring 1994 Celebrating 25 Years of UNIX Volume 6 No. 1

“I believe all significant software movements start at the grassroots level.
UNIX, after all, was not developed by the President of AT&T.”

Kouichi Kishida, UNIX Review, Feb., 1987

Table of Contents

UNIX and Computer Science. Page 1
An Interview with John Lions.. Page 10
An Interview with Berkley Tague. Page 17
On the 25th Anniversary of UNIX. Page 27
Usenet News: The Poor Man’s ARPAnet. Page 33
What the Net Means to Me. Page 40
Plumbing The Depths Of UNIX. Page 43
Using UNIX Tools. Page 49
C Program.. Page 57
New Net Book. Page 58
The Linux Movement.. Page 59
The Ten Commandments for C. Page 66
May Day in the Morning. Page 72
Free Software Foundation.. Page 73

UNIX and Computer Science
by Ronda Hauben

[Editor’s Note: This year, 1994, is the 25th anniversary of the invention
of UNIX in 1969 at Bell Labs. The following is from a “Work In
Progress” introduced at the USENIX Summer 1993 Conference in
Cincinnati, Ohio. This article is intended as a contribution to a dis-
cussion about the significance of the UNIX breakthrough and the lessons
to be learned from it for making the next step forward.]

Webpage: http://www.ais.org/~jrh/acn/

Page 1

http://www.ais.org/~jrh/acn/

The Multics collaboration (1964-1968) had been created to “show
that general-purpose, multiuser, timesharing systems were viable.”
Based on the results of research gained at MIT using the MIT Com-
patible Time-Sharing System (CTSS), AT&T and GE agreed to work
with MIT to build a “new hardware, a new operating system, a new file
system, and a new user interface.” Though the project proceeded slowly
and it took years to develop Multics, Doug Comer, a Professor of
Computer Science at Purdue University, explains that “fundamental
issues were uncovered” in the process of the research on Multics, “new
approaches were explored and new mechanisms were invented.” The
most important, he explains, was that “participants and observers alike
became devoted to a new form of computing (the interactive, multiuser,
timesharing system). As a result, the Multics project dominated
computer systems research for many years, and many of its results are
still considered seminal.”1

 By 1969, however, AT&T made a decision to withdraw from the pro-
ject. Describing that period, Dennis Ritchie, one of the inventors of
UNIX at Bell Labs writes, “By 1969, Bell Labs management, and even
the researchers came to believe that the promises of Multics could be
fulfilled only too late and too expensively.”2

 “Even before the GE-645 Multics machine was removed from the
premises,” Ritchie explains, “an informal group led primarily by Ken
Thompson, had begun investigating alternatives.”
 Thompson and Ritchie presented Bell Labs with proposals to buy a
computer so they could build an interactive, time sharing operating
system for it. Their proposals weren’t acted on. Eventually, Ken
Thompson found a little used and obsolete PDP-7 computer, a tiny ma-
chine in the class of a Commodore 64 computer.
 The environment Thompson was attempting, explains Ritchie, in-
cluded “many of the innovative aspects of Multics,” such as “an explicit
notion of a process as a locus of control, a tree-structured file system, a
command interpreter as a user-level program, simple representation of
text files, and generalized access to devices.”3

 Describing the primitive conditions that Thompson faced when at-
tempting to create his desired programming environment, Ritchie writes,
“At the start, Thompson did not even program on the PDP itself, but in-

Page 2

stead used a set of macros for the GEMAP assembler on a GE-635
machine. A postprocessor generated a paper tape readable by the PDP-7.
These tapes were carried from the GE machine to the PDP-7 for testing
until a primitive UNIX kernel, an editor, an assembler, a simple shell
(command interpreter), and a few utilities (like the UNIX rm, cat, cp
commands) were completed. At this point, the operating system was
self-supporting; programs could be written and tested without resort to
paper tape, and development continued on the PDP-7 itself.”4

 The result, Ritchie explains, was that “Thompson’s PDP-7 assembler
outdid even DEC’s in simplicity; it evaluated expressions and emitted
the corresponding bits. There were no libraries, no loader or link editor:
the entire source of a program was presented to the assembler, and the
output file – with a fixed name – that emerged was directly executable.”5

 The operating system was named UNIX, to distinguish it from
MULTICS.
 As work continued to create this new operating system, the researchers
developed a set of principles to guide their work. Among these princi-
ples were:
 “(i) Make each program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding new features.
 (ii) Expect the output of every program to become the input to another,
as yet unknown, program. Don’t clutter output with extraneous
information. Avoid stringently columnar or binary input formats. Don’t
insist on interactive input.
 (iii) Design and build software, even operating systems, to be tried
early, ideally within weeks. Don’t hesitate to throw away the clumsy
parts and rebuild them.
 (iv) Use tools in preference to unskilled help to lighten a programming
task, even if you have to detour to build the tools and expect to throw
some of them out after you’ve finished using them.”6

 By 1970, Ritchie writes, the UNIX researchers were “able to acquire
a new DEC PDP-11. The processor,” he remembers, “was among the
first of its line delivered by DEC, and three months passed before its
disk arrived.”7 Soon after the machine’s arrival and while “still waiting
for the disk, Thompson,” Ritchie recalls, “re-coded the UNIX kernel and
some basic commands in PDP assembly language. Of the 24 Kbytes of

Page 3

memory on the machine, the earliest PDP-11 UNIX system used 12
Kbytes for the operating system, a tiny space for user programs, and the
remainder as a RAM disk.”8

 “By early 1973,” Ritchie explains, “the essentials of modern C were
complete. The language and compiler were strong enough to permit us
to rewrite the kernel for the PDP-11 in C during the summer of that
year.”9

 Each program they built developed some simple capability and they
called that program a tool. They wanted the programs to be inviting to
use and to be helpful to programmers. Describing the achievements of
the lab, Doug McIlroy, one of the researchers and Thompson’s Depart-
ment Head when he created the UNIX kernel, describes the atmosphere
at the lab: “Constant discussions honed the system.... Should tools
usually accept output file names? How to handle de-mountable media?
How to manipulate addresses in a higher level language? How to min-
imize the information deducible from a rejected login? Peer pressure and
simple pride in workmanship caused gobs of code to be rewritten or dis-
carded as better or more basic ideas emerged. Professional rivalry and
protection of turf were practically unknown: so many good things were
happening that nobody needed to be proprietary about innovations.”10

 The research done at the Labs was concerned with using the computer
to automate programming tasks, such as the ones needed to program and
operate the newly installed electronic telephone switches. By a scientific
approach to their work and careful attention to detail, Bell Labs re-
searchers determined the essential elements in a design and then created
a program to do as simple a function as possible. These simple computer
automation tools would then be combined to build programs to do more
complicated tasks.
 They created a UNIX kernel accompanied by a toolbox of programs
that could be used by others at Bell Labs and the Bell System. The
kernel consisted of about 11,000 lines of code. “The kernel,” Ken
Thompson writes, “is the only UNIX code that cannot be substituted by
a user to his own liking. For this reason, the kernel should make as few
real decisions as possible.”11

 Thompson describes creating the kernel: “What is or is not imple-
mented in the kernel represents both a great responsibility and a great

Page 4

power. It is a soap-box platform on ‘the way things should be done.’
Even so, if ‘the way’ is too radical, no one will follow it. Every
important decision was weighed carefully. Throughout, simplicity has
been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.”12

 The kernel was conceived of as what was essential and other features
were left to be developed as part of the tools or software that would be
available. Thompson explains: “The UNIX kernel is an I/O multiplexer
more than a complete operating system. This is as it should be. Because
of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel
does not support file access methods, file disposition, file formats, file
maximum sizes, spooling, command language, logical records, physical
records, assignment of logical file names, logical file names, more than
one character set, an operator’s console, an operator, log-in, or log-out.
Many of these things are symptoms rather than features. Many of these
things are implemented in user software using the kernel as a tool. A
good example of this is the command language. Maintenance of such
code is as easy as maintaining user code. The idea of implementing ‘sys-
tem’ code and general user primitives comes directly from
MULTICS.”13

 During the same period that Bell Labs researchers were doing their
early work on UNIX, the Bell System was faced with the challenge of
automating their telephone operations using minicomputers.
 “The discovery that we had the need – or actually, the opportunity –
in the early 1970s to use these minis to support telephone company oper-
ations encouraged us to work with the UNIX system,” writes Berkeley
Tague.14 “We knew we could do a better job with maintenance, traffic
control, repair, and accounting applications.”
 “The existing systems were made up of people and paper,” he relates,
“The phone business was in danger of being overwhelmed in the early
‘70s with the boom of the ‘60s. There was a big interest then in using
computers to help manage that part of the business. We wanted to get rid
of all of those Rolodex files and help those guys who had to pack in-
struments and parts back and forth just to keep things going.”
 He goes on to describe the kind of operations that the Bell Systems

Page 5

needed to automate.
 Just as Operating Systems people in the Bell System had come to
recognize the need for portability in a computer operating system,
Ritchie and Thompson and the other programming researchers at Bell
Labs had created the computer language C and rewritten the majority of
the UNIX kernel in C and thus had made the important breakthrough of
creating a computer operating system that was not machine dependent.
Eventually, 10,000 lines of the code were rewritten in C and thus could
be transported to other computer systems. Describing the advance the
UNIX time sharing system represented, Thompson and Ritchie
presented their first paper on UNIX at the Fourth ACM Symposium on
Operating Systems Principles, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, October 15-17, 1973.15

 With the research breakthrough of a portable computer operating
system, “the first UNIX applications,” writes August Mohr, in an article
in UNIX Review, “were installed in 1973 on a system involved in
updating directory information and intercepting calls to numbers that
had been changed. The automatic intercept system was delivered for use
on early PDP-11s. This was essentially the first time UNIX was used to
support an actual, ongoing operating business.”16

 Also, Bell Labs made the software available to academic institutions
at a very small charge. For example, John Lions, a faculty member in the
Department of Computer Science at the University of New South Wales,
in Australia, reported that his school was able to acquire a copy of re-
search UNIX Edition 5 for $150 ($110 Australian) in December, 1974,
including tape and manuals.17

 The automation introduced at AT&T had the benefit of research done
not only at Bell Labs, but also by researchers in the academic commun-
ity.
 Early in its development, word of the UNIX operating system and its
advantages spread outside of Bell Labs. (Several sources attribute this
to the paper that Ritchie and Thompson presented on UNIX at the
Symposium on Operating Principles in 1973.)18

 UNIX was attractive to the academic Computer Science community
for several reasons. After describing the more obvious advantages like
its price, that it could be shaped to the installation, that it was written in

Page 6

C which was attractive when compared with assembly language, that it
was sufficiently small that an individual could study and understand it,
John Stoneback, a faculty member at Moravian College, writes: “UNIX
had another appealing virtue that many may have recognized only after
the fact — its faithfulness to the prevailing mid ‘70s philosophy of
software design and development. Not only was UNIX proof that real
software could be built the way many said it could, but it lent credibility
to a science that was struggling to establish itself as a science. Faculty
could use UNIX and teach about it at the same time. In most respects,
the system exemplified good computer science. It provided a clean and
powerful user interface and tools that promoted and encouraged the
development of software. The fact that it was written in C allowed actual
code to be presented and discussed, and made it possible to lift textbook
examples into the real world. Obviously, UNIX was destined to grow in
the academic community.”19

 In trying to teach his students the essentials of a good operating
system, John Lions of the University of New South Wales in Australia
describes how he prepared a booklet containing the source files for a
version of Edition 6 of research UNIX in 1976 and the following year
completed a set of explanatory notes to introduce students to the code.
“Writing these,” he recounts, “was a real learning exercise for me. By
slowly and methodically surveying the whole kernel, I came to under-
stand things that others had overlooked.”20

 This ability to present his students with an exemplary operating system
kernel was an educational achievement. Lions writes: “Before I wrote
my notes on UNIX, most people thought of operating systems as huge
and inaccessible. Because I had been at Burroughs, I knew that people
could get to learn a whole program if they spent some time working at
it. I knew it would be possible for one person to effectively become an
expert on the whole system. The Edition 6 UNIX code contained less
than 10,000 lines, which positioned it nicely to become the first really
accessible operating system.”21

 In keeping true to the UNIX community spirit of helping each other,
Lions wrote a letter to Mel Ferentz, Lou Katz and others from USENIX
(then the academic UNIX users association) and offered to make copies
of his notes available to others. After some negotiation with Western

Page 7

Electric over the patent licensing, he distributed the notes titled “A
Commentary on the UNIX Operating System” to others with UNIX
licenses on the conditions that Western Electric had set out.22

 Describing how research UNIX and its adoption at academic institu-
tions has served to develop computer science, Doug Comer writes: “The
use of UNIX as a basis for operating systems research has produced
three highly desirable consequences. First, the availability of a common
system allowed researchers to reproduce and verify each others’
experiments. Such verification is the essence of science. Second, having
a solid base of systems software made it possible for experimenters to
build on the work of others and to tackle significant ideas without
wasting time developing all the pieces from scratch. Such a basis is
prerequisite to productive research. Third, the use of a single system as
both a research vehicle and a conventional source of computing allowed
researchers to move results from the laboratory to the production
environment quickly. Such quick transition is mandatory of state-of-the-
art computing.”23

 Not only did research UNIX serve the academic community, but the
contributions of the academic community were incorporated into re-
search UNIX. An example, is the work at the University of California,
Berkeley (UCB) of designing a virtual memory version of UNIX for the
VAX computer which was later optimized and incorporated into a
release of UNIX.
 “A tide of ideas,” explains Comer, “had started a new cycle, flowing
from academia to an industrial laboratory, back to academia, and finally
moving on to a growing number of commercial sites.”24

 Summarizing the relationship between Bell Labs and the academic
community in developing UNIX, Comer concludes: “UNIX was not
invented by hackers who were fooling around, nor did it take shape in
a vacuum. It grew from strong academic roots and it has both nurtured
and taken nourishment from academia throughout its development. The
primary contributors to UNIX were highly educated mathematicians and
computer scientists employed by what many people feel is the world’s
premier industrial research center, Bell Laboratories. Although they
were knowledgeable and experienced in their own right, these develop-
ers maintained professional contacts with researchers in academia,

Page 8

leading to an exchange of ideas that proved beneficial for both sides.
Understanding the symbiotic relationship between UNIX and the
academic community means understanding the background of the
system’s inventors and the history of interactions between universities
and Bell Laboratories.”25

 John Lions, reviewing his experience as part of the UNIX community,
concludes, “We have made a large number of contacts and exchanged
a great deal of information around the world through this UNIX
connection. Possibly that is the nicest thing about UNIX: it is not so
much that the system itself is friendly but that the people who use it
are.”26

 It is a rare and wonderful event in the development of human society
when a scientific and technological breakthrough is made which will
certainly affect the future course of social development and which
becomes known when its midwives are still alive to tell us about it. The
creation of UNIX, the product of research at Bell Labs, the then
regulated AT&T system, and academic computer science, and a valuable
invention for computer science, for computer education and for the
education of the next generation of computer scientists and engineers,
is such an event.

Notes:

(1) Douglas Comer, “Pervasive UNIX: Cause for Celebration,” UNIX Review, October,
1985, p. 42.
(2) From Dennis Ritchie, “The Development of the C Language,” ACM, presented at
Second History of Programming Languages Conference, Cambridge, Mass, April 1993,
p.1.
(3) Ritchie, p. 1-2.
(4) Ibid., p 2.
(5) ibid.
(6) From M. D. McIlroy, E. N. Pinson, and B. A. Tague “UNIX Time-Sharing System
Forward,” The Bell System Technical Journal, July-Aug 1978, vol 57, no 6, part 2, pg.
1902.
(7) Ritchie, p. 5.
(8) ibid.
(9) ibid., p. 9.
(10) M.D. McIlroy, “UNIX on My Mind,” Proc. Virginia Computer Users Conference,

Page 9

vol 21, Sept. 1991, Blacksburg, p. 1-6.
(11) K. Thompson, “UNIX Implementation,” The Bell System Technical Journal, vol
57, No. 6, July-August 1978, p. 1931.
(12) ibid., p. 1931-2.
(13) ibid., p. 1945-6.
(14) “Interview with Berkeley Tague,” UNIX Review, June 1985, p. 59. (See also Sorry
Wrong Number, by Alan Stone, N.Y. 1989, p. 155-156 describing the service crisis ex-
perienced by AT&T during this period and how UNIX helped to solve the problem.)
(15) See reference in UNIX(tm) Time-Sharing System: UNIX Programmers Manual,
7th edition, vol 2, Murray Hill, f/n p. 20). See also Ritchie’s account of the creation of
C by early 1973 in “The Development of the C Language,” ACM, presented at Second
History of Programming Languages Conference, Cambridge, Mass, April 1993, p. 1.
(16) Mohr, “The Genesis Story,” UNIX Review, January 1985, p. 26.
(17) See, for example, McKusick, “A Berkeley Odyssey” in UNIX Review, January
1985, p. 31, and Peter Ivanov, “Interview with John Lions,” UNIX Review, October,
1985, p. 51.
(18) See “An Interview with John Lions,” in UNIX Review, October, 1985, p. 51.
(19) From John Stoneback, “The Collegiate Community,” UNIX Review, October 1985,
p. 27.
(20) Lions, p. 52
(21) Lions, p. 52-3.
(22) ibid., p. 53.
(23) Comer, p. 44.
(24) Comer, p. 43.
(25) Comer, p. 34, 42.
(26) Lions, p. 57.

Spreading UNIX Around the World:
An Interview with John Lions

[Editor’s Note: Looking through some magazines in a local university
library, I came upon back issues of UNIX Review from the mid 1980's.
In these issues were articles by or interviews with several of the pioneers
who developed UNIX. As part of my research for a paper about the
history and development of the early days of UNIX, I felt it would be
helpful to be able to ask some of these pioneers additional questions
based on the events and developments described in the UNIX Review
Interviews.

Page 10

 Following is an interview conducted via E-mail with John Lions, who
wrote A Commentary on the UNIX Operating System describing Version
6 UNIX to accompany the “UNIX Operating System Source Code Level
6" for the students in his operating systems class at the University of
New South Wales in Australia. Lions’ important book provided some of
the earliest printed commentary and documentation of the UNIX kernel.
John Lions is a Professor of Computer Science in the School of
Computer Science and Engineering, at the University of New South
Wales.]

Q: John, I have been reading with joy the interview with you that
was published in UNIX Review in October, 1985. I found it inspiring
because it showed the hard fight you and your colleagues and students
took up to be able to adopt UNIX at your University and to help to
spread it in Australia and around the world. In the UNIX Review article
you describe the arrival of UNIX saying “UNIX was a revolutionary
force on our campus.” You tell how the University of New South Wales
decided to purchase a Cyber 72 computer in 1974. But, since the Cyber
could only recognize User200 terminals which were by that time
obsolete, the University bought some PDP-11/40's to emulate User200s.
You describe how you wrote for information about UNIX after reading
an article by Ritchie and Thompson published in the “Communications
of the ACM,” and explained how a copy of Edition 5 tape and manuals
arrived in late December, 1974. A little later in the Interview you relate
how Ian Johnstone with assistance from others wrote a new User200
emulator “that ran under UNIX. That,” you point out, “became the first
application of UNIX to be written in Australia This exercise proved
to be extremely important. With a PDP-11,” you explain, “completely
to ourselves, we most likely would have run vanilla UNIX on it and been
happy. But because we had to provide the User200 emulator, we had to
learn a lot about the system and pay a lot of attention to performance
issues. We needed help, but we couldn’t get any from outside sources.
So we ended up generating our own expertise.”

Lions: Undoubtedly true....

Q: What was it about UNIX that led you to do the hard work that

Page 11

you did? Were you aware of the power that it promised? Was that some
of the consideration or was it more practical – that you had certain things
you wanted to be able to do and could hack to get the UNIX system to
do it?

Lions: UNIX was wonderfully plastic. We changed things to adapt
them to our situation...because it was a challenge, and we were having
fun!

Q: You then say that through your work on UNIX you started to
make a few friends elsewhere on campus. Were they from any other
particular department? How did you begin to build a user group? Did
you start having formal meetings?

Lions: Other people at the other batch stations were interested in
solving the same problems as we were, so we found a common cause.
This included the Library which in those days had passwords for the
ordinary user accounts, but not for the super-user...very convenient!

Q: Can you say what kinds of similar problems people in other
universities were encountering at the time that led you to be able to work
together?

Lions: In a word...isolation.
Q: Do you have any idea why UNIX was so widely adopted at other

Australian Universities?
Lions: We spread the news evangelically...We were very anxious

to share our accumulated knowledge and to experiment...and we wanted
to share it with others. We were having fun!

Q: You say that UNIX has possibly made a deeper penetration in
Australia than in any other country.

Lions: That comment has to be understood in its proper context. I
would not make it today. UNIX penetration is now 100% by university,
though not by department within universities. The Internet is heavily
UNIX-dependent, so I believe.

Q: In the UNIX Review interview, you describe how in 1975, Ian
Johnstone who was acting as a tutor for the operating systems course
you taught, asked, “Why don’t we run off a few of the source code files
for the kernel and ask the students to take a look at them? Then we can
ask them some questions; maybe it will be interesting.” What kind of
questions did you folks intend to ask?

Page 12

Lions: The same kind that the Commentary answers....
Q: After you took his suggestion and you both selected what

seemed like a reasonable subset of the kernel and handed it out to
students, you report that you asked them questions, but that they didn’t
have enough information to answer them so “they came back to us with
questions of their own many of which we couldn’t answer.” Can you say
any more about how the students suggested that you offer the complete
kernel for study?

Lions: They suggested that it should be all or nothing. The selection
of code I finally printed (on a DECwriter) is only complete in a limited
sense. Section Five that deals with device drivers could have been much
longer.

Q: Was there any special reason that you took their suggestions?
What led to the preparation in 1976 of the booklet containing the source
files for a version of Edition 6 UNIX that could run on a PDP-11/40
system?

Lions: Seemed reasonable at the time...what other options reason-
ably existed?

Q: You say “Writing these was a real learning exercise for me. By
slowly and methodically surveying the whole kernel, I came to under-
stand things that others had overlooked.” Can you give any examples of
what you came to understand that others had overlooked?

Lions: No. I guess what I meant to say was that I obtained an
integrated view that allowed me to see more connections in the code
than others did. I used to test the students’ knowledge and understanding
by weekly tests. Most years there would be two tests on each of the first
four sections of the code.
 Students could sit for both tests in each section, but they were
discouraged from submitting more than one answer for marking. If they
chose to submit two answers, their mark was the better of the two, less
10%. This allowed students to recover from a bad first result, while
discouraging them from trying again if their first attempt was reason-
able. Marking was always a problem as overnight turnaround was
needed.
 The sophistication of the questions increased over the years and
toward the end, some new questions were quite devious. (Don’t ask me

Page 13

for examples!)
Q: In the Commentary you say: “A decision had to be made quite

early regarding the order of presentation of the source code. The
intention was to provide a reasonably logical sequence for the student
who wanted to learn the whole system. With the benefit of hindsight, a
great many improvements in detail are still possible, and it is intended
that these changes will be made in some future edition.” Did you ever
write the future edition making the changes?

Lions: No. There had been a three year gap between [UNIX -ed]
Editions Six and Seven. This created a window of opportunity for us that
never really occurred again.

Q: In your Commentary you say “You will find that most of the
code in UNIX is of a very high standard. Many sections which initially
seem complex and obscure, appear in the light of further investigation
and reflection, to be perfectly obvious and ‘the only way to fly.’ For this
reason, the occasional comments in the notes on programming style,
almost invariably refer to apparent lapses from the usual standard of near
perfection But on the whole you will find that the authors of UNIX,
Ken Thompson and Dennis Ritchie, have created a program of great
strength, integrity and effectiveness, which you should admire and seek
to emulate.”

Lions: That is what I believed then...and still do.
Q: Can you say any more about the conclusion you drew of the high

standard of code in the UNIX kernel? Do you feel that students and
others who studied your book and the code did emulate it? Did that help
improve the level of code of those who had access to your book and the
source code?

Lions: In a general sense, I believe the answer is ‘yes’: students did
learn better coding practices.

Q: In the UNIX Review article, you relate that in 1977 at the
University of New South Wales you were developing your own PDP
version of UNIX to handle heavy student loads and that Ian Johnstone,
Peter Ivanov and Greg Rose developed a “sanitized extended version of
UNIX.” And you made some changes to the kernel. Can you say what
the most important ones were?

Page 14

Lions: We fixed bugs that we found...or had introduced ourselves.
I cannot recall what they were...and of course the Seventh Edition
changed everything anyway. We only did it once: that was enough.

Q: Was your examination of the kernel for the Commentary helpful
in determining what changes to the kernel were needed. For example, in
the Commentary on p. 82 under “Some Comments” you say “‘namei’ is
a key procedure which would seem to have been written very early, to
have been thoroughly debugged and then to have been left essentially
unchanged. The interface between ‘namei’ and the rest of the system is
rather complex, and for that reason alone, it would not win the prize for
‘Procedure of the Year.’” Earlier in the Commentary in chapter 19 (p.
82) you say “Copy the eight words of the directory entry into the array
‘u.u_dent’.” Then you comment, “The reason for copying before
comparing is obscure! Can this actually be more efficient? (The reason
for copying the whole directory at all is rather perplexing to the author
of these notes.);” Were these problems clarified upon further examina-
tion or if not, did you make any effort to solve them when you folks
made changes to the kernel?

Lions: No comment now. My understanding changed over the
years, and some questions that may been obscure once were no longer
so.

Q: In the UNIX Review Interview you explain that you were the first
person from the UNIX community in Australia to spend a sabbatical at
Bell Labs. Who invited you to the Labs? When? Why? What did you do
once there?

Lions: After I started distributing copies of my notes on UNIX
(Source Code and Commentary), I sent more than two hundred copies
to BTL [Bell Telephone Laboratories -ed]. One night (sometime in
1978?), I had a phone call from Doug McIlroy saying BTL would like
to assume responsibility for distributing those documents, and would I
agree? I did. It saved me much work.
 At the beginning of 1978, when I was starting to wonder what to do for
my first sabbatical leave, I had another late night call, this time from
Berkley Tague enquiring whether I might be willing to visit BTL,
another easy decision.
 In the middle of 1978, my family (us and two daughters) set off for the

Page 15

USA, Madison, NJ in particular, where Berkley had arranged for us to
rent the house of an academic from Drew University. (They were going
to the south of France for his sabbatical!)
 I can still remember arriving at 26 Morris Place, tired but pleased to
be there (I think we must have rented a car from Newark airport).
Shortly afterwards Berk arrived and introduced himself. We have been
firm friends since then, with both him and his wife, Anne-Marie. He is
undoubtedly one of nature’s gentlemen.
 Madison, N.J. is only a few miles (less than 10 – I forget!) from BTL.
Incidentally, Berkley used to collect me each morning and drive me
from Madison to the Labs, so my wife could have our car!

Q: You say in the UNIX Review interview that you worked in the
UNIX Support Group while at Bell Labs during that first sabbatical and
were able to introduce a number of utilities, including pack, etc. Can
you say more about what your work was during that first sabbatical?

Lions: There were no expectations and I was given a free hand to
follow my own interests. Fortunately for BTL I had lots of ideas, so
there was never a problem.

Q: Do you know how your book was used as part of the work that
USG [UNIX Support Group -ed] was doing? Do you know how it was
used both elsewhere in Bell Labs and outside?

Lions: I had sent them the original copies of my notes. They
reproduced them and provided one copy to each new licensee (so I
believe). Each new licensee was allowed to make additional copies
under specified conditions.

Q: At the end of the UNIX Review Interview you say that it was not
so much that the UNIX system is friendly but that the people who use it
are. Do you have any sense of what about UNIX makes this true?

Lions: Not really. That was just my experience. I think you ought
to remember that BTL is a very special place, and its Research Depart-
ment is also very special.

Q: What would you see as an appropriate way to commemorate the
25th anniversary of the creation of UNIX in 1994?

Lions: I gather USENIX is attempting to organize a meeting.

Page 16

Automating Telephone Support
Operations:

An Interview with Berkley Tague

[Editor’s Note: The following interview with Berkley Tague was also
done while I was doing research for a paper on the history and signifi-
cance of UNIX®. During the course of this research, I found an
interview which had appeared in UNIX Review, (“Interview with
Berkley Tague,” June, 1985) The interview suggested some further
questions which I sent to Berkley Tague via e-mail. His responses were
very helpful and I thought that others would find them interesting as
well. Therefore, we asked for permission to print them in the special
issue of The Amateur Computerist to commemorate the 25th Anniversary
of UNIX®. Following are the questions and his responses. He empha-
sized that his answers were his personal experience as part of the
UNIX® development project and represent only one of many such views
of the Bell Labs project. -RH]*

Q(1): Can you explain what the problem was that AT&T was trying
to solve in the 1960's and 1970's with regard to labor intensive support
operations that had to be automated (i.e., mechanized)? What kinds of
operations were the problem and why did they need to be automated?

Tague: The push – it began about 1969 – was to use the computer
to support the operation of the Bell System network. The effort was
quite broad in scope: monitoring and alarms, maintenance and staff
management, inventory and order control, revenue data collection and
billing, traffic measurement and control, circuit provisioning, etc.
 To take one example, the data that has to be collected to bill for calls
was being stored on a variety of media – e.g. paper AMA tape, a
punched paper tape a few inches wide, IBM compatible mag. tape, and
probably a few others. These tapes had to be mounted, saved, trucked to
DP [Data Processing -ed] centers for processing, etc. They could be lost
or damaged in handling. An obvious solution was to send the data over
datalinks – our own network – to the DP centers. Minicomputer-based

Page 17

systems were designed to collect, pre-process and transmit this data in
some cases; in others, the electronic switches themselves were pro-
grammed to do the job. The goal was to eliminate the need for people
handling physical media – a process that is both expensive and error-
prone.

Q(2): What work was done by Bell Labs in 1964-68 as part of the
Multics Project? Why did AT&T get involved with the Multics
collaboration? (Can you explain what were the labs’ objectives?) A
reference I have found mentioned that “Bell Labs’ purpose was to have
a good environment for our people to work in.” (See “Putting UNIX in
Perspective: An Interview with Victor Vyssotsky,” UNIX Review, Jan.,
1985, pg. 59) If that seems accurate to you, can you explain why that
was the objective and what it meant? And what happened with the
project that AT&T decided they had to drop out?

Tague: The Multics Project was a joint project of Bell Labs, the GE
Computer Systems Division, and MIT’s Project MAC to develop a new
computer and operating system that would replace MIT’s CTSS system,
Bell Labs BESYS, and support the new GE machine. Bell Lab’s
objective was to obtain a computing system that could simultaneously
support batch, time-shared and real-time processing under an operating
system that provided a full set of features with exceptional security. GE,
and MIT’s Project MAC, had overlapping, but somewhat different sets
of objectives. Why the project ended as it did – Multics never was used
by Bell Labs or AT&T as other than a research tool – is a complex story
that I don’t fully know. (The part I think I know also may be only partly
correct.) What is clear is that Multics was a seminal effort in computing
science and operating systems design. It established principles and
features of operating system design that today are taken for granted in
any modern operating system. This design experience and the UNIX®
system itself were the payoff for Bell Labs in the long run.
 Vic’s remark covers one of the objectives. Multics was intended to be
a standard operating environment to support Bell Labs computing. That
role was eventually filled by the UNIX® system, not Multics.

Q(3): What was learned from the project and was there a sense how
this could be helpful at Bell Labs?

Page 18

Tague: Much that was learned from the project was embedded in
C and the UNIX® system. The security rings and related concepts also
have had impact on subsequent computer security even though the
full-blown security apparatus of Multics was not propagated in the
UNIX® system. There are undoubtedly many other Multics features and
concepts that were not in UNIX® but still had impact on computing
science. I don’t know all of the work that was done, especially after I left
the project in 1967; the system was almost entirely rewritten after I left
the project.

Q(4): What was going on with computer science research during
this period at the Labs?

Tague: Bell Labs terminated its participation in the Multics project
(except for a couple of people wrapping up loose ends) in the summer
of 1969. At the same time, Bell Labs turned the large internal computing
centers over to a new central Bell Labs organization called Computing
Technology. This included the Murray Hill Computing Center that up
to then had been operated by Computing Research.
 These changes meant that a number of researchers in Computing
Science were asked to redirect their efforts. In the review and redirection
that ensued, one point of view was that Computing Research should
focus exclusively on theoretical subjects such as automata theory,
computing complexity theory, formal linguistics, etc. Since this would
have excluded the UNIX® system experiments, it is fortunate that this
viewpoint didn’t prevail. (I don’t think it ever got beyond a talking point
in the debate.)

Q(5): You mentioned you came back to Bell Labs in 1970. What
was the situation that brought you back there (if it was related to the
development of UNIX®)? Were you involved with the development of
UNIX® during that period?

Tague: I have never left Bell Labs. The confusion is the internal
nomenclature. In 1967, I left Bell Labs Research – this is the basic
research area that is located at Murray Hill and Holmdel – and took a
position managing a software development group in Bell Labs Federal
Systems division in Whippany, N.J. that was part of the Safeguard ABM
project. I returned from that assignment in September of 1969 to Murray
Hill to join the Murray Hill Computing Center. This was during the

Page 19

transition that ended Bell Labs participation in Multics and transferred
the MH Computing Center to the new central organization (see #4). I
reported to co-directors – one in Research and one in the newly formed
Computing Technology organization. All of these organizations were
part of Bell Labs.
 I was not involved with Multics development after 1967 when I joined
Safeguard and only became involved with UNIX® officially in late 1971
or so. I began exploring its use in development for telephony applica-
tions late in 1972 or thereabouts. This led to requiring the UNIX®
system for some development projects and forming the UNIX Support
Group in September of 1973. This was a supervisory group of about five
people that reported to me and was also part of Bell Labs. It was
responsible for moving the UNIX® system from research to an
internally supported product for software development and operations
services.

Q(6): Can you explain when the work at Bell Labs on UNIX® was
thought of as being helpful toward the problem that AT&T faced in
automating support operations? Was there an awareness at the Labs that
the work they were doing on UNIX® was not only toward creating a
good programming environment to do their research in, but also to be
able to create a good programming environment for others at AT&T
who would be doing programming? If so how early was there this
awareness? (If you know.)

Tague: The researchers involved had as their goal an operating
system that would be good for software development from the start.
Because they were their own first customers, the system was aimed at
their fellow researchers. There is really not that much difference
between the needs of research and [the needs of -ed] development in
terms of tools and features, the difference is primarily in support,
stability and reliability. Developers have deadlines and don’t want any
more dependence on new invention than absolutely necessary. Also, if
you have development deadlines, you certainly don’t want anyone
changing the system independently as you do your work. As a researcher
you may tolerate a fair amount of upset and revision if it improves your
toolkit significantly. The creation of the UNIX® Support Group was
precisely to provide the stability and support that would buffer develop-

Page 20

ers from the experiments that researchers were daily imposing on the
evolving UNIX® system.
 As mentioned above, the UNIX® system was used by developers and
supported operations in the field as early as 1972. There were about
three different systems at that time that had been built in research for
minicomputers, but I felt that UNIX® was the best of the lot since it had
captured most of the best features of Multics in a small, elegant package.
(See my UNIX Review interview, pages 60ff.)

Q(7): What difficulties were involved in trying to have UNIX®
used for the task of automating support operations? Why was it being
proposed? What obstacles did it face?

Tague: One major difficulty was convincing developers that they
could depend on an operating system that had no official support and
consisted of some 12,000 lines of uncommented code. (Proposing the
UNIX Support Group was the obvious answer to this.) But UNIX® had
one major advantage: I knew of no minicomputer vendor that had
anything approaching it as part of their product line. Most minicomputer
systems at that time were inferior to DOS 1 in function, speed and
reliability. UNIX® had a rare opportunity to fill what was effectively a
vacuum. I was pushing UNIX® onto our development community
because I knew they needed it in spite of its shortcomings. A number of
developers were planning to build their own operating systems –
typically their first system and often their first major program. It was
quite rational to suggest that someone who had been working for several
years on his third operating system might be ahead of them.

Q(8): What led to the creation of the UNIX Support Group (USG)?
When? What was its mandate?

Tague: I think I answered this one in the answer to #7. One of the
nice properties of Bell Labs is that when you perceive a need, you can
propose a solution with a good chance of being asked to go do it
yourself. In 1973, I pointed out that there was a need to provide central
support for the UNIX® systems we had been propagating into projects
and volunteered to form the group in my department. By September, 1
was in business.

Q(9): Once the USG was formed (in 1973) was there a distinction

Page 21

between the priorities of the Bell Labs people and the USG people in
their collaboration? August Mohr’s article [i.e., August Mohr, “The
Genesis Story,” UNIX Review, Jan., 1985] seems to indicate that they
both agreed there was a need for portability despite different priorities.

Tague: When the USG was formed in September, 1973, Dennis
Ritchie promised me the portable version in October and delivered it. It
was a “no brainer” to go into business with the portable version. A goal
of my effort was to gain vendor independence so we could get competi-
tive bids on volume buys when we deployed these mini-based systems
across the Bell System. There was one project that decided it couldn’t
wait until October and committed to the non-portable version, but that
was the only project that used the non-portable version as far as I know.

Q(10): What were the problems and successes of USG?
Tague: The biggest problem was controlling the UNIX® system

variants that continually emerged. New features and function were
added by every project and the USG had to choose among or merge the
variants in a continuing effort to filter out the redundancies and keep the
best. Berkeley, the University not me, was doing this in parallel with us
and with only loose coordination possible.
 The success of USG was its contribution to the success of the UNIX®
system. UNIX® created open systems and a multibillion dollar market.
Not bad for a two person research initiative on an obsolete mini.

Q(11): Did Rudd Canaday’s work represent similar objectives?
What was the division between the two groups and why?

Tague: I am not sure what you mean by “Rudd Canaday’s work”
in this context. Rudd shares in the patent on the UNIX® file system
which he did in Research as a colleague of Ken and Dennis. Later, he
moved to the Business Information Systems (BIS) project and brought
the UNIX® system with him. The Programmer’s WorkBench (PWB)
variant grew up in his department.
 The BIS problem was to get a common “workbench” that would drive
code onto any of the three or four commercial vendor’s mainframes that
were used by BIS. By putting a UNIX® system in front of the large
mainframe systems, developers got the advantages of UNIX® in
developing code and a place they could store debugged standard
command sequences that drove development and testing on the target

Page 22

mainframe.
 The PWB support group was merged with the USG in about 1975 and
the USG and PWB versions were integrated. Note that during the 70s,
every development group modified the UNIX® system for its needs.
The PWB group was one of many and was distinguished only by the
quality of its work and the fact that it was widely deployed through a
large and important project (BIS). But there were also very active groups
at Columbus and at Holmdel Bell Labs locations that were modifying
the system and offering their mods to the USG for inclusion in the base
version.
 The vice and virtue of UNIX® has always been its flexibility. You
love its flexibility when you meet a new need, but you want a single
standard version once it meets your needs. COSE is just the latest of
many efforts to coalesce the variants into a common base.

Q(12): Who invited John Lions to the Labs? When? Why? What did
he do once there?

Tague: Research asked me to invite him to work with the USG. He
had written his wonderful book on the UNIX® system early in the game
and we had found it most useful. We agreed to publish and distribute the
book and wanted John to continue his work as one of the UNIX apostles
in Europe and Australia. He wanted to come to Murray Hill for his
sabbatical so it was a win/win situation. He spent two or three sessions
at Bell Labs over the years and supplied us with many of his graduate
students for sabbaticals and permanent employment. For me, he became
not only a valued contributor, but a good friend. A truly delightful
gentleman!
 At this distance, I don’t remember exactly what he worked on, but I
asked him to extend his documentation of the system to some new
features while giving him license to work with the researchers in
whatever way was mutually fruitful. His book is a classic that is still
worth reading by the would-be operating systems designer.

Q(13): Was his book A Commentary on the UNIX Operating System
used at the Labs or in the USG? If so how?

Tague: Yes. We offered it as a part of the documentation package
for those who wanted to understand or modify the UNIX® source that
the USG shipped. It was very useful as an introduction even though the

Page 23

code no longer matched the book. It outlined the conceptual architecture
very clearly in the early short form of the system before it had accreted
all the minor changes and feature additions that disguised the original
clarity of its structure. All new people were given a copy when they
joined the USG and I suspect most development groups did the same.

Q(14): Who else did you invite from his school and why? What
work did they do?

Tague: It’s a long list and I don’t trust my memory, but Andrew
Hume is still in research at Murray Hill. Ian Johnstone left us for
Sequent and I believe is now working in Boston with another firm. Peter
Ivanov and Piers Dick-Lauder were two others who were part of my
department, and there were likely others who came along after I left the
scene. They all worked on UNIX® system development, but I couldn’t
tell you what parts they worked on. I do remember that Ian worked on
the first multiprocessor versions, but he did many other things prior to
that. I used to kid about running the “Australian Chair of Computing
Science” at Bell Labs.

Q(15): In the UNIX Review interview you are quoted saying that
you originally opposed having UNIX go out to colleges. But it did
anyway. What was the reason you opposed it (if anything in addition to
what you said in the interview)? Why was it allowed to go out over your
objections? What would you say was the result of making it available to
academic institutions outside of AT&T?

Tague: I don’t have anything substantive to add to what I said in the
interview, but perhaps I can clarify what I was trying to say there. My
position in the early ‘70s was that we should make C available outside
Bell Labs in the way we released other tools for university (and
occasionally for commercial) use through our patent licensing organiza-
tion. This release was “caveat emptor” — i.e., dollars on the table up
front with no support included. I opposed the release of the UNIX®
system without support because I was afraid it would be adopted for
commercial use by someone who could call up the president of AT&T
and demand help. I knew that any such request would likely find its way
to my department and we were not ready to provide outside support. I
also had a vague idea that the system might be more valuable to AT&T
as a proprietary AT&T system. I was wrong. The system was rapidly

Page 24

picked up by academic and industrial research groups that were well
prepared to deal with the no support proviso and it had no takers in the
DP community until it was offered as a supported product. The value of
the system as a portable open standard was evident early and when
AT&T was allowed to enter the computing business, it was a clear
winner as a de facto standard.

Q(16): How has UNIX® been used for support operations? When
was it understood that it could be used? Does it continue to be used?

Tague: The UNIX® system is the standard operating environment
for almost all internal development and much research at Bell Labs and
has been so since the early eighties. The BaseWorX© platform that we
use and sell for operations support systems includes UNIX® SVR4 as
an essential component. Operations support usage started in about 1971
and continues today.

Q(17): Was portability the only problem that had to be solved
before UNIX® could be used internally for support operations? If there
were other such problems what were they?

Tague: See the answers above. There were many extensions and
features that have been added over the years – interprocess communica-
tions mechanisms, streams, transaction processing, databases, etc. – and
most of these are useful to the broad community of Bell Labs users.
Each was originally motivated by some perceived user problem. As the
UNIX® system has evolved, it has incorporated valuable features from
other systems and served as a base for pioneering new ideas. It is
interesting to see the UNIX® to Mach to NT evolution as the kernel is
subdivided to meet new fundamental needs while still maintaining
original functions in almost the same form as the original V6. Even DOS
imitates a good bit of the command set in a roughly familiar way.

Q(18): In the UNIX Review Interview you are quoted saying that
you expected the internal development of UNIX® within AT&T to be
mirrored outside of AT&T. Has that happened or not? Do you have any
insight why?

Tague: I am going to duck this one. I am not sure what I had in
mind when I said it at this point. I guess I was thinking that the external
market would continue the process of expanding the system rapidly to
include new features, followed by attempts to filter them into a coherent

Page 25

extended standard. Neither the internal development nor the external
development has gone as I might have predicted (or might have hoped)
a decade ago, but the system is still alive, evolving and providing service
on a broader spectrum of hardware than any other system around.

Q(19): What are the successes of it all that you see? (of the UNIX®
and USG developments?) the problems?

Tague: See my answer to #10 above. The biggest problem
continues to be the variants and the difficulty of getting an industry
standard API that supports “shrink wrapped” software packages. The
issue of a standard “desktop” GUI is probably a close second. COSE is
trying again and I wish them well.

Q(20): What would you see as an appropriate way to commemorate
the 25th anniversary of these achievements?

Tague: Stop for a moment and contemplate how much of what we
take for granted in today’s operating systems was established in that
post-Multics synthesis by Ken and Dennis, acknowledge the pioneers of
Projects MAC and Multics, and then go back to work on defining the
next plateau.

[*Note: Please understand that what you have is my personal view of the
UNIX® system developments and not necessarily those of Bell Labs.
Your questions made me go over an interesting part of my career with
Bell Labs and you likely got more than you bargained for. Each
participant in UNIX® system development has his or her own view of
this period and they don’t always agree as to the order or interpretation
of events. I cannot claim to more than one such view and, as an early
enthusiast, may well overestimate my personal role in the story. Berk
Tague]

Page 26

Creating a New Technology:
The Technology of Software

Production
An Editorial on the

25th Anniversary of UNIX

[Editor’s Note: The following editorial is an effort to encourage a
discussion of the significance of UNIX. We welcome alternative
viewpoints, comments, etc. on the issues raised in this editorial.]

In his book Ancient Society, Louis Henry Morgan, who has been
called the father of anthropology, described the important role that the
creation of iron played in the advance of human civilization. He wrote:
“When the barbarian, advancing step by step, had discovered the native
metals, and learned to melt them in the crucible and to cast them in
moulds; when he had alloyed native copper with tin and produced
bronze; and, finally, when by a still greater effort of thought he had
invented the furnace, and produced iron from the ore, nine tenths of the
battle for civilization was gained.”1

“Furnished with iron tools,” continued Morgan, “capable of holding
both an edge and a point, mankind were certain of attaining to
civilzation.”2

Morgan called the production of iron, “the event of events in human
experience.... Out of it,” he wrote, “came the metallic hammer and anvil,
the axe and the chisel, the plow with an iron point, the iron sword; in
fine, the basis of civilization which may be said to rest upon this metal.”

With the birth of the modern computer, the development of a new
technology has been put on the agenda for our times. This technology
will not be forged in furnaces as were the tools of our ancestors. It is not
even possible to grab or hold this technology.3 This technology is the
technology of software production. The challenge for our society is to
be able to develop a software production technology.

By the early 1960's, Bell Labs researchers realized that there would

Page 27

be an ever increasing role that computers would play in the operations
of a large utility like the U.S. telephone system. And the telephone
service crisis of the late 1960's showed that indeed AT&T had to
automate to be able to meet its obligations to the public in the U.S. To
accomplish this automation, they realized they would have to put
software production on a more rational basis. Writing about this
challenge, researchers explained: “One might think that because typing
is easier than soldering, it should be easier to change software than to
change hardware. However, the ease of changing software depends on
the language at hand, the quality of the editor, the file system, structure,
etc.”4

The UNIX time sharing system was created 25 years ago at Bell
Labs to help to fulfill this need. One of the important contributions of
UNIX in its 25 years of development has been the role that UNIX has
played to put the production of software on a more rational and scientific
basis.

Describing the problem facing computer software pioneers, Evan L.
Ivie, a researcher at Bell Labs, writes: “Although the computer industry
now has some 30 years of experience, the programming of com-
puter-based systems persists in being a very difficult and costly job. This
is particularly true of large and complex systems where scheduled slips,
cost overruns, high bug rates, insufficient throughput, maintenance
difficulties, etc., all seem to be the rule instead of the exception. Part of
the problem stems from the fact that programming is as yet very much
a trial and error process.”5

Ivie explains that there is “only the beginnings of a methodology or
discipline for designing, building and testing software. The situation is
further aggravated,” he adds, “by the rapidly changing hardware industry
and by the continuing evolution of operating systems which continues
to nullify much of the progress that is made in the development of
programming tools. What can be done,” he asks, “to move the program-
ming industry toward a more professional and stable approach to
software development?”6

 After enumerating several possible alternatives, he proposes “a very
different approach to improving the development process.” The
approach he proposes is that “the programming community develop a

Page 28

program development ‘faculty’ (or facilities) much like those that have
been developed for other professions.” And he cites as examples a
“carpenter’s workbench,” or a “dentist’s office,” or an “engineer’s
laboratory.” This approach, he maintains, “would help focus attention on
the need for adequate tools and procedures; it would serve as a mecha-
nism for integrating tools into a coordinated set; and it would tend to add
stability to the programming environment by separating the tools from
the product (the current approach,” he notes, “is equivalent to carpenters
leaving their tools in each house they build.)”7

Ivie’s proposal was carried out in what came to be known as the
Programmer’s Workbench. A set of UNIX and C software development
tools were created and were made available to programmers, even
though they were working on different machines and with different
operating systems.

P. J. Plauger, one of the UNIX pioneers who helped to define the
concept of a software development tool writes that “the programmer
working as a tool builder finds that his impact extends far beyond the
task he may originally have set out to solve.”8

Doug McIlroy, one of the creators of UNIX, explains that the term
“software tools” was still unnamed around the circle of UNIX pioneers
until Brian Kernighan and Plauger wrote the book Software Tools. “The
idea nevertheless became a ‘guiding principle,’” writes McIlroy.

It was only with the “liberation of the grep pattern matching
program from within the ed editor, that the unarticulated notion of
software tools…was finally brought home.”9 “More than any other
program,” McIlroy explains, “grep focused the viewpoint that Kernighan
and Plauger christened and formalized in ‘Software Tools’: make pro-
grams do one thing and do it well, with as few preconceptions about
input syntax as possible.”10

Kernighan and Plauger give the following definition of a software
tool: “It uses the machine; it solves a general problem not a special case;
and it’s so easy to use that people will use it not build their own.”11

Describing one of the important problems that UNIX was called on
to solve, Dick Haight, another of the pioneers, explained the problem
facing AT&T, one of the largest corporations in the U.S., in the early
1970s.

Page 29

“We had a real problem to solve,” Haight elaborates in an interview.
“For one thing, we had a fairly large group of software developers at the
Labs working on several different mainframes. The biggest group...
consisted of people working on the IBM 360s or 370s. The programmers
working on the IBM 360 or 370 had to contend with batch processing
and IBM’s Job Control Language (JCL) problems. Other programmers
were working with the Univac and another group with Xerox computers.
Only a few were using early but expensive time sharing like TSO
(IBM’s timesharing) and Univacs Remand Service.” Haight explains
that “these systems not only offered very different programming
environments but proved to be very expensive to use and very un-
friendly.” As part of a group formed in the Business Information
Systems Program, (BISP), Haight and his colleagues were charged with
the task of creating a more rational programming environment for the
AT&T programmers. “Basically,” he explains, “we ended up trying to
give all these people a cheap text editing front end for interactive
program entry.” Haight and his colleagues had experience with the
UNIX program development system and they used it to create the PWB
– a Programmer’s Workbench facility that eventually included over 300
tools.

The Programmer’s Workbench (PWB) created at Bell Labs in
response to this need, encouraged the development of machine inde-
pendent programming tools. “Each tool,” they maintained, “must now
function for programmers developing code for a number of different
vendor machines.... One is thus forced into a more stable and general-
ized software development approach which should be more applicable
to new machines.”12

The PWB was conceived of in mid April 1973, installed on the first
workbench computer in October 1973 (PDP 11/45) and by 1977 the
Programmer’s Workbench computers were serving 1000 developers.
Eventually, it was used to write the thousands of lines of computer code
needed for the development of the 5ESS switch that AT&T was
installing.13

The contribution of UNIX to the creation of such advances in the
programming profession needs to be studied and built on. The problems
of software development are the difficult problems that the computer

Page 30

revolution has thrust on center stage.
Writing in a time of similar technological change, Denis Diderot,

who was the editor of the Great French Encyclopedia (Encyclopédie, ou
dictionaire raissoné des sciences, des arts et des métiers) realized the
need to catalog and graphically present drawings of the tools and
industrial processes in use in industry up to that time. Though he was
attacked for revealing the secrets of the trades, this work made it
possible for others to study the level of tool development in use and
improve on it.

In his book The History of the Machine (NY, 1979), Sigvard
Strandh describes how tool production had been at a standstill from the
middle ages until the early days of the industrial revolution. He explains
that there were previous plans for building some of the components of
the steam engine, but the tools that would make doing so possible were
not yet available.

The work of those like Diderot to publish descriptions of what
knowledge was known in the production of tools and industrial
processes, helped to advance the state of the art of the technology of tool
production, as they made it possible to build on what had been achieved.

In an article describing how the PWB was ported to the IBM
System/370, the authors write that there were at the time 300 UNIX or
C tools that were part of the Programmer’s Workbench. Sadly, many of
those tools no longer seem to be available. Commenting on the state of
availability of UNIX tools, another UNIX pioneer, John Mashey
observed, “Our ability to organize software and make it available has
lagged our ability to write it.”14 Also, the concept of a software
component catalog, first mentioned by Doug McIlroy in 1968 before the
creation of UNIX, and then reintroduced in the Bell Labs Journal
articles15 needs to be reviewed and reestablished as a goal. The scientific
principle that Plaugher emphasizes, is that the only way to make
substantial progress in any field is by building on the work of others.
Just as UNIX was built on the lessons that Ritchie and Thompson and
others learned from the experience of CTSS and the early Multics
collaboration, so it is helpful to learn from the experience of UNIX in
order to make any further advances. That is the challenge that the 25th
anniversary of UNIX puts on the agenda for those who want to advance.

Page 31

As Henry Spencer and Geoff Collyer wrote in their article “News Need
Not Be Slow”: “To know how to get somewhere, you must know where
you are starting from.”

Notes

(1) Louis Henry Morgan, Ancient Society, Chicago, 1877, p.4
(2) ibid., p. 43
(3) Fred Brooks Jr. explains that “Software is invisible and unvisualizable.... The reality
of software is not embedded in space.” from “No Silver Bullets,” UNIX Review, Nov.
1987, p. 41.
(4) “Microcomputer Control of Apparatus, Machinery, and Experiments” by B. C.
Wonsiewicz, A. R. Storm, and J. D. Sieber, “The Bell System Technical Journal,”
July-August 1978, vol 57, no. 6, pt 2, p. 2211.
(5) “Programmer’s Workbench — A Machine for Software Development,” Communi-
cations of the ACM, Oct. 1977, vol 20, no 10. p. 746
(6) ibid.
(7) ibid.
(8) “Minicompilers, preprocessors and other tools,” in AFIPS Conference Proceedings,
vol 44, 1975, pg. 281.
(9) “UNIX on My Mind,” Proc. Virginia Computer Users Conference, vol 21, Sept
1991, Blacksbury, pg. 1-6.
(10) From e-mail correspondence.
(11) “Interview with Dick Haight,” UNIX Review. May 1986.
(12) “Programmer’s Workbench,” p. 749.
(13) See “A UNIX System Implementation for System/370” by W.A. Felton, G. L.
Miller, and J. M. Milner, Bell Laboratories Technical Journal, October, 1984,
(14) “UNIX Leverage – Past, Present, Future,” Usenix Winter 1987 Conference
Proceedings, p. 8
(15) See for example “Software Tools and Components” by R. F. Bergerson and M. J.
Rochkind and “Cable Repair Administration System,” by P. S. Boggs and J. R.
Mashey, p. 1275 in Bell System Technical Journal, July-August 1982

Page 32

The Development of Usenet News:
The Poor Man’s ARPAnet

[Editor’s Note: The following article is part 2 of “From ARPAnet to
Usenet” which appeared in vol. 5 no. 3/4 of the Amateur Computerist.
Since Usenet News demonstrates the power of UNIX, we felt it
appropriate to include it as part of this special issue. Also Usenet News
celebrates its 15th anniversary this year.

The ARPAnet provided an exciting experimental environment for
those who had access to U.S. Department of Defense contracts. Many of
the computer science community, however, did not have such access,
but also wanted to be part of an online community. Graduate students in
computer science helped to broaden access to the wonders of the
ARPAnet by creating Usenet News, which they originally referred to as
“The Poor Man’s ARPAnet.”]

Part II
Usenet News was born in 1979 when Tom Truscott and Jim Ellis,

graduate students at Duke University in Durham, NC, and Steve
Bellovin, a graduate student at the University of North Carolina in
Chapel Hill, NC, conceived of building a computer network to link the
computers at their different schools together. Using homemade 300 baud
autodial modems and the UNIX to UNIX copy program (uucp) that was
being distributed with the UNIX Operating System, Version 7, Steve
Bellovin wrote some simple UNIX shell scripts to have the computers
automatically call each other up, search for changes in the files, and then
copy the changes.

While e-mail and mailing lists had been common on the ARPAnet,
Gregory G. Woodbury, a Usenet pioneer at Duke describes how “News
allowed all interested persons to read the discussion, and to (relatively)
easily inject a comment and to make sure that all participants saw it.”1

“The ‘genius’ of the netnews,” he explains, “was to see that the shell, the
find command, and uucp would allow categorized news discussions to
be shared between machines that were only connected by a serial line.”

Soon three computer sites, duke, unc and phs (i.e. at Duke [duke],

Page 33

at the University of North Carolina [unc], and at the Physiology Depart-
ment of the Duke Medical School [phs]) were hooked together and a
simple program was running connecting the three sites. Woodbury
explains that Dennis Rockwell, a graduate student in Computer Science
at Duke, had gotten a Systems Programmer job for the Physiology
Department at the Medical School. When Physiology decided to use
UNIX for the project that Rockwell was working on, “then it was a
matter of convenience to have a hardwired circuit between the two
machines for moving programs back and forth (between CS and Physiol-
ogy.)” And since Rockwell, “migrated back and forth between Physiol-
ogy and CS, he was instrumental in getting the connection to ‘phs’ imple-
mented,” Woodbury recalls, “so that he didn’t have to spend his working
time across the street at CS.”

Woodbury reports that the Netnews program that was created, using
UNIX shell scripts, was slow. Tom Truscott explains that the Usenet
pioneers did not intend to use the shell scripts for any real news traffic.

Stephen Daniel, a new graduate student in computer science at Duke
in 1979 describes how “a news program written, I believe, by Steve
Bellovin as a collection of shell scripts was already working, but it was
slow, taking upwards of a minute of time on an unloaded PDP 11/70 to
receive an article. I got involved,” he explains, “when I happened to
drop in on a conversation between Tom Truscott and Jim Ellis who were
complaining about how slow this news program was. I suggested that if
it was so slow it could easily be rewritten in C to run faster. I soon found
myself volunteering to do just that.” Daniel agreed to write the program
in C along with Tom Truscott. This was the first released C version of
Net News, which was known as ‘A News.’
 In January of 1980, Jim Ellis presented a talk at Usenix, the UNIX
users association for technical and academic users. He tells how there
were 400 people at the conference with no parallel sessions, so many
came to hear his talk describing the Netnews uucp program.
 The invitation Ellis handed out at the January 1980 conference ex-
plained: “The initially most significant service will be to provide a rapid
access newsletter. Any node can submit an article, which will in due
course propagate to all nodes. A ‘news’ program has been designed
which can perform this service. The first articles will probably concern

Page 34

bug fixes, trouble reports, and general cries for help. Certain categories
of news, such as ‘have/want’ articles, may become sufficiently popular
as to warrant separate newsgroups. (The news program mentioned above
supports newsgroups.)”

“The mail command provides a convenient means for responding
to intriguing articles. In general, small groups of users with common
interests will use mail to communicate. If the group size grows suffi-
ciently, they will probably start an additional news group....”

“It is hoped that USENIX will take an active (indeed central) role
in the network. There is the problem of members not on the net, so
hardware newsletters should remain the standard communication
method. However, use of the net for preparation of newsletters seems
like a good idea.”2

In the scientific tradition of gaining knowledge from the testing of
one’s theory in practice, the pioneers of Usenet invited others to partici-
pate in the network and then to work out the problems that developed.
Their Invitation urged: “This is a sloppy proposal. Let’s start a commit-
tee. No thanks! Yes, there are problems. Several amateurs collaborated
on this plan. But let’s get started now. Once the net is in place, we can
start a committee. And they will actually use the net, so they will know
what the real problems are.”

The software for the ‘A News’ program for Usenet News was part
of the conference tape for general distribution at the Delaware Summer
1980 USENIX meeting. The handout distributed at this conference ex-
plained: “A goal of Usenet has been to give every UNIX system the
opportunity to join and benefit from a computer network (a poor man’s
ARPAnet, if you will)”3

 Describing why the term “poor man’s ARPAnet” was used, one of the
students, Stephen Daniel, explains, “I don’t remember when the phrase
was coined, but to me it expressed exactly what was going on. We (or
at least I) had little idea of what was really going on on the ARPAnet,
but we knew we were excluded. Even if we had been allowed to join,
there was no way of coming up with the money. It was commonly ac-
cepted at the time that to join the ARPAnet took political connections
and $100,000. I don’t know if that assumption was true, but we were so
far from having either connections or $$ that we didn’t even try. The

Page 35

‘Poor man’s ARPAnet’ was our way of joining the CS community
(Computer Science -ed), and we made a deliberate attempt to extend it
to other not-well-endowed members of the community. It is hard to
believe in retrospect,” he writes, “but we were initially disappointed at
how few people joined us. We attributed this lack more to the cost of
autodialers than lack of desire.”4

Unlike the ARPAnet, Usenet News was available to all who were
interested as long as they had access to the UNIX operating system
(which in those days was available at a very minimal cost to the aca-
demic community.) Posting and participating in the network was avail-
able at no cost besides what the colleges paid for equipment and the
telephone calls to receive or send Netnews. Therefore, the joys and
challenges of being a participant in the creation of an ever expanding
network, the experience available to an exclusive few via the ARPAnet,
was available via Usenet News to those without political or financial
connections – to the common-folk of the computer science community.

As Daniel notes, Usenet pioneers report that they were surprised at
how slowly Usenet sites expanded at first. But when the University of
California at Berkeley (ucb) joined Usenet, links began to be created be-
tween Usenet and the ARPAnet. University of California at Berkeley
was a site on the ARPAnet. At first, it is reported, mailing lists of discus-
sions among ARPAnauts (as they were called by Usenet users) were
poured into Usenet. Also by 1979-80, ucb was under contract to ARPA
to provide a version of UNIX (Berkeley Software Distribution) for the
ARPA contractors that were going to be upgraded to VAX computers.
 This first connection between the ARPAnet and Usenet News, only
contributed to “the sense of being poor cousins,” Daniel explains, “It
was initially very hard to contribute to those lists, and when you did you
were more likely to get a response to your return address than to the con-
tent of your letter. It definitely felt second class to be in read-only mode
on human-nets and sf-lovers.” (Those were two popular ARPAnet mail-
ing lists. The human-nets mailing list, according to Tom Truscott, was
a discussion of the implications of world-wide ubiquitous networking.
This network of the future was referred to as “world net.” Truscott
reports that “it was a very interesting mailing list and possible only due
to the ability of the network itself to permit those interested in this

Page 36

obscure topic to communicate.” -ed)
Daniel clarifies the different philosophy guiding the development

of Usenet as opposed to that of the ARPAnet. He explains, “Usenet was
organized around Netnews, where the receiver controls what is received.
The ARPAnet lists were organized around mailing lists, where there is
a central control for each list that potentially controls who receives the
material and what material can be transmitted. I still strongly prefer the
reader-centered view,” he concludes.

With the increasing connections to the ARPAnet from Usenet, the
numbers of sites on Usenet grew. A map from April 1981 shows the
number of different sites on Usenet during this early period.

Usenet as of April 5, 1981:5

 reed phs
 \ / \
 decvax---duke---unc
 | / \
 | mhtsa--research mh135a
 ucbopt---+ | | \ |
 | | | eagle ihnss vax135
 ucbcory---\ | | | / /
 >-------ucbvax– ------+------+-------------\
 ucbarpa---/ | | | \
 | sdcarl sdcsvax menlo70--hao ucsfcgl
 ucbonyx--+ \ / |
 phonlab sytek

While the ARPAnet made possible electronic mail (e-mail) and
discussion groups via electronic mail (i.e. mailing lists), Usenet made it
possible for participants to post any message they wanted and it could
be seen by everyone.

Pioneers from the early days of Usenet point out that originally
there were a fair number of people who read all the posts. However, as
Usenet started to grow there were different newsgroups that got set up
and they were grouped by subject area, and the number of articles be-
came too large for any individual to read them all.

Subject areas on Usenet range from the discussion of autos (i.e.
rec.autos) to the science of economics (i.e. sci.econ). There are many
computer related groups (e.g. comp.misc, comp.unix.misc, etc.) Orig-
inally, the creators of Usenet felt that most of the posts would be related
to UNIX problems and bugs. But from the earliest days of Netnews,

Page 37

there was a broad range of discussion.6

Often there have been problems that have developed in Usenet. The
system administrators and others discuss the problem and argue out their
differences. Sometimes what is called a “flame war” develops where
people argue out their differences online.

The network has proven especially valuable in helping system
administrators and programmers deal with the problems they run into
with their work. Researchers using the network have found the collabo-
rative work it makes possible very exciting.

Usenet now reaches over 10 million people and has more than 5,500
newsgroups. And the number of both is always growing. It has been
made possible by the cooperative work of the participants and the pro-
gramming tools of UNIX and C that were created by the research pro-
grammers at Bell Labs and added to by programmers and users around
the world. Writing their programs using UNIX and C, participants in the
UNIX community have written the A, B and C News and INN versions
of Netnews which have made it possible for Usenet to accommodate an
ever expanding number of megabytes of news from an ever expanding
number of computer users. Also other programmers have contributed
their time and labor to create newsreaders, mail programs and other
software needed for the ever growing community of people participating
in Usenet News.7

After the original porting of the ARPAnet mailing lists to Usenet,
connections with the ARPAnet increased. Eventually, Usenet traffic was
allowed to go through the ARPAnet. Steve Bellovin describes how the
early porting of mailing lists like Human Nets and Sci-Fi Lovers onto
Usenet was a force to broaden access to ARPAnet. He explains: “The
first gateway of ARPAnet mailing lists to Usenet was an early force to
have gateways within ARPAnet. Gateways to the ARPAnet were on the
side things and in all likelihood not officially sanctioned. However, this
provided the impetus for gateways into ARPAnet. This was the pressure
on the ARPAnet to provide service to a larger number of people – a first
step to transform the ARPAnet to become a part of the backbone of the
Internet.”8

In 1987, the U.S. government set up the NSFnet under pressure
from academic scientists and computer scientists to provide additional

Page 38

access to the developing network. The NSFnet replaced the ARPAnet as
the backbone for the Internet and the ARPAnet was decommissioned in
1989.9

In its early years, Usenet was mainly transported via uucp using the
telephone lines. A protocol was later created for Usenet to make it pos-
sible for it to ride on the ARPAnet and then the NSFnet and along the
Internet, and thus cut down on phone costs for transporting it.

Following are some statistics that have been gathered of Usenet
growth:
 1979: 3 sites, 2 articles a day
 1980: 15 sites, 10 articles a day
 1981: 150 sites, 20 articles a day
 1982: 400 sites, 50 articles a day
 1983: 600 sites, 120 articles a day
 1984: 900 sites, 225 articles a day
 1985: 1,300 sites, 375 articles per day, 1+ Megabyte per/day
 1986: 2,500 sites, 500, 2MB+ articles a day
 1987: 5,000 sites, 1000, 2.5MB+ articles a day
 1988: 11,000 sites, 1800, 4MB+ articles a day

Usenet sites posted about 26,000 articles per day to 4902 groups for
65 total megabytes (52 without headers) over the two week period
before 8 March, 1993.10

Usenet has continued to grow and there are times that it seemed it
would break under its ever increasing expansion. This concern is re-
ferred to as “The imminent death of the net is predicted” and has became
a source of net folklore. During such difficult periods, mailing lists have
been set up to discuss the problems. In one such discussion group, sev-
eral of the participants put forward plans for a substantial change in
Usenet, while other participants urged that it was crucial to first figure
out the exact nature of the problem, if one wants to find a solution to that
problem.11

[to be continued]

Page 39

Notes:

(1) Gregory Woodbury in a post on Usenet News on April 12, 1993. “Unfortunately,”
Woodbury regrets, “I don’t recall who had this flash of insight, and the 5 folk honored
by the EFF (Electronic Frontier Foundation – ed) formed the core of folks who devel-
oped the idea into a real working system.” (The Electronic Frontier Foundation gave
an award to Tom Truscott and Jim Ellis and cited Steve Bellovin, Stephen Daniel and
Dennis Rockwell for their creation of Usenet at its 1993 awards ceremonies.)
(2) “Invitation to a General Access UNIX Network” by Tom Truscott, Duke Univer-
sity. Copy from Usenet History Archives.
(3) Copy in the Usenet History Archives.
(4) From E-mail dated January 25, 1993, Usenet History List.
(5) Map from Usenet History Archives.
(6) See talk presented at the Michigan Association of Computer Users in Learning on
“The Evolution of Usenet News: The Poor Man’s ARPAnet,” March 15, 1993.
(7) See for example Gene Spafford’s “Usenet Software: History and Sources,” avail-
able on Usenet News and Gregory G. Woodbury’s “Net Cultural Assumptions” which
has been posted on Usenet News.
(8) From Usenet History Archives.
(9) The CSNet created for Science and Computer faculty at Universities not connected
to the ARPAnet was part of the pressure that led to the NSF Net. See description in
“The Social Forces Behind the Development of Usenet News” in The Amateur
Computerist, vol 5, no 1-2, Winter/Spring, 1993.
(10) Early statistics to 1988 compiled by Gene Spafford. (Oct 1, 1988, IEFT Meeting)
Latest statistics by David C. Lawrence.
(11) See, for example, Usenet-II Mailing List of Nov. 10, 1985 in the Usenet History
Archives. One of the posters to the list commented, “I don’t want to be fixing the
wrong problem.”

What the Net Means to Me
by Michael Hauben

(hauben@columbia.edu)

The Net means personal power in a world of little or no personal
power for those other than on the top. (Those on top are called powerful
because of money, but not because of thoughts or ideas.) The essence of
the Net is Communication: personal communication both between
individual people, and between individuals and those in society who care

Page 40

(and do not care) to listen. The closest parallels I can think of are:

- Samizdat Literature in Eastern Europe.
- People’s Presses
- The Searchlight, Appeal to Reason, Penny Press, etc.
- Citizen’s Band Radio
- Amateur or Ham radio.

However the Net seems to have grown farther and to be more acces-
sible than the above. The audience is larger, and continues to grow. Plus
communication via the Net allows easier control over the information —
as it is digitized and can be stored, sorted, searched, replied to, and
easily adapted to another format.

The Net is the vehicle for distribution of people’s ideas, thoughts
and yearnings. No commercial service deals with the presentation of
peoples’ ideas. I do not need a computer to order flowers from FTD or
clothes from the Gap. I need the Net to be able to voice my thoughts,
artistic impressions, and opinions to the rest of the world. The world will
then be a judge as to if they are worthy by either responding or ignoring
my contribution.

Throughout history (at least in the USA), there has been a phenome-
non of the street-corner soapbox. People would “stand up” and make a
presentation of some beliefs or thoughts they have. There are very few
soapboxes in our society today. The ‘70s and ‘80s wiped out public
expression. The financial crisis substituted a growing sentiment of make
your money or shut up. In the late ‘80s and early ‘90s, the Net has
emerged as a forum for public expression and discussion. The Net is
partially a development from those who were involved with the Civil
Rights movement, anti-war struggles and free speech movements in the
‘60s. The personal computer was also a development by some of these
same people.

Somehow the social advances rise from the fact that people are
communicating with other people to help them undermine the upper
hand other institutions have. An example is people in California keeping
tabs on gas station prices around the state using Netnews and exposing
gougers. Another example is people publically reviewing music them-

Page 41

selves – rather than telling others, “you should really go buy the latest
issue of magazine ‘X’ (Rolling Stone, etc) as it has a great review.” This
is what I mean by people power – people individually communicating
to present their view on something rather than saying go get commercial
entity ‘Xs’ view from place ‘Y.’ This is people contributing to other
people to make a difference in people’s lives. In addition, people have
debated commercial companies’ opposition to the selling of used CDs.
This conversation is done in a grassroots way – people are questioning
the music industry’s profit making grasp on the music out there. The in-
dustry definitely puts profit ahead of artistic merit, and people are not
interested in the industry’s profit making motive, but rather great music.

The Net is allowing two new avenues not available to the average
person before:
1) A way of having one’s voice heard.
2) A way of organizing and questioning other people’s experiences so
as to have a better grip on a question or problem.
Thus in some ways there is a regaining control of one’s life from soci-
ety.

These are all reasons why I feel so passionately about: 1) keeping
the Net open to everyone, and having such connections being available
publicly, and 2) Keeping the Net un-commercialized and un-privatized.
Commercialism will lead to a growing emphasis on OTHER uses for the
Net. As I said before, it is NOT important for me to be able to custom
order my next outfit from the Gap or any other clothing store. Com-
panies should develop their own networks if they wish to provide an-
other avenue to sell their products. In addition, commercial companies
will not have it in their interest to allow people to use the Net to realize
their political self. Again let me reemphasize, when I say politics, I mean
power over one’s own life and surroundings. And this type of politics I
would call democracy.

Page 42

Plumbing The Depths Of UNIX:
File Redirection and Piping

by Sue D. Nimms

[Author’s Note: This article begins by describing the purpose of a shell;
examples are given to show simple file redirection and piping; and con-
cludes with a few real-life scenarios that involve relatively complex text-
manipulation and processing using UNIX.]

A shell is a text-based command interpreter through which a user
can interact (run programs and utilities) with UNIX. Similarity, a graphi-
cal user interface (GUI) is a graphical shell that, while easing the burden
of typing, restricts access to commands otherwise available to the com-
mand-line shell user.

Just as there are various GUI shells, there exist various command-
line shells: the Bourne Shell (sh), the C-Shell (csh), the Korn Shell
(ksh), the Bourne Again Shell (bash) and the Plan-9 Shell (rc); the
Bourne Shell (sh) is the most ubiquitous shell being available on all
UNIX platforms.

The differences among the shells, for the most part, include:
 - special features unique to one (like C shell’s job-control – a feature
 designed to ease the management of programs running in the back-
 ground)
 - the syntax of internal commands (for-loop, while-loop and if/else
 constructs)

(Note: bash combines the best features of the sh, csh and ksh)
The shells allow customizing of the user’s environment, the prompt,

etc., and writing shell scripts. A shell script is a group of commands
saved in a file and executed by giving the name of the file rather than
typing in the commands interactively.

These differences aside, the underlying concepts of program execu-
tion remain constant no matter what shell one uses. Each program, when
run, has three defaults (file-descriptors) associated with it:
 1) it expects input from the keyboard (stdin: standard input),

Page 43

 2) it outputs normal text (stdout: standard output) to the screen and,
 3) it also outputs error messages (stderr: standard error) to the screen.

These defaults can be reset, by the user, using redirection and piping
to suit the appropriate situation.

The simplest example of redirecting output is saving the output of
a UNIX command to a file. The ls command lists the contents of a dir-
ectory to the screen, by default. This output can be redirected to a file
using the symbol > placed between the command and a filename (the
file will be created, if it does not exist):

EXAMPLE 1.

 ls > foo
The output of ls (i.e. the list of files) is now contained in the file

named ‘foo’.

EXAMPLE 2.

 ls -l > foo
The -l option to the ls command indicates that the user wishes a

long-form listing (a listing that shows file-size, creation-date, ownership,
etc). This example demonstrates that the redirection symbol and file-
name must come after any options.

The syntax for redirecting input is similar to that of redirecting
output; the < symbol is used instead, followed by the filename whose
contents should be in a form the command expects them.

EXAMPLE 3.

 mail elf < foo
The program mail can be used to both read and deliver electronic

mail (e-mail) to other users. In the above example, the file ‘foo’ contains
the directory listing created in Example 1. This file is mailed to a user
whose user-id is ‘elf’.

Again, the redirection symbol and filename come after any options
(in this case, the user-id of the recipient).

Page 44

The command-pipe (represented by the symbol | is used to channel
the output of one program into the input of another. It is placed between
two commands.

EXAMPLE 4.

If a directory contains 100 files, a terminal-screen 25 lines long is
not sufficient to view all the file-names; they will scroll off the screen.
The more program is a pager, i.e. it pauses after every page for an
indication (a key press) to continue.

 ls -l | more
In this example, the output of ls (100 lines) is piped into the more

program. The more program displays 24 lines of output of the ls com-
mand and pauses.

EXAMPLE 5.

 ls -l | tr ‘[a-z]’ ‘[A-Z]’ | more
In this example three commands are used with pipes between them.

The tr program is used to translate all lower-case characters (a-z) taken
from its input (the ls -l command) to upper-case characters (A-Z). The
output of the tr program is then piped into more.

Any number of commands may be run with piping between them.

SCENARIO 1.
Suppose you are a professor that has a teaching assistant who per-

forms the grading of test-papers (150 students) and submits the marks
to you by e-mail. To maintain privacy, only the student-numbers (in the
first column) and marks (the second column) are submitted:

 0124879 99
 0132988 73
 1987724 55
 etc.

Page 45

This list is saved in a file called ‘marks-list.’ It is sorted numerically
on the first field, the student numbers.

You have a list of student names and student numbers in a file
called ‘class-list’:

 0124879 Scythe, J.
 0132988 Smith, K.
 1987724 Smith, L.
 etc.

However, for a meeting, you require the student names and marks,
essentially, a selective merging of the two files: the second field of the
‘class-list’ (the names file) and the second field of the ‘marks-list’ (the
marks file).

The solutions to this problem are numerous. Two solutions will be
demonstrated here; the more involved one first.

SOLUTION 1.
We begin by cutting the required fields from each of the files. We

need the second field from both the ‘class-list’ (i.e. the names) and the
‘marks-list’ (the marks).

First we search for a command that fits our purpose by using the
apropos command and the key-word “cut.” We find, among others, the
cut command. At the $ prompt we type:

 $ apropos cut
We find: ...
 :
 cut (1V) - remove selected fields from each line of a file
 :

To use the man command to view the manual-page for cut, we
type:

 $ man cut

Page 46

We learn we can cut field two (f2), specify that the field-separators
are spaces ('-d ') [note: there is a space after the d], take input from the
‘marks-list’ file and save the output in the file called ‘marks’:

 cut '-d ' -f2 < marks-list > marks
Similarly, we can cut field two (f2) of the ‘class-list,’ the names and

save the output in the file called ‘names’:

 cut '-d ' -f2 < class-list > names
Since we now wish to join the two files column by column, we

attempt an apropos on the keyword “column,” which yields the com-
mand pr:

 pr (1V) - prepare file(s) for printing, perhaps in multiple columns
 :
We find that:

 pr -m names marks > meeting-list
finishes the task.

SOLUTION 2.
There is an easier way. An apropos on the keyword “join” yields:

 join (1) -relational database operator

The join command handles this task with ease, precluding the extra
steps of cutting the appropriate fields in the files:

 join -o 1.2 2.2 class-list marks-list > meeting-list
The output ('-o' option) contains field two ('1.2') [file1, field2] of the

first file ‘class-list’ and field two ('2.2') [file2, field2] of the second file
‘marks-list’:

 Scythe, J. 99
 Smith, J. 73
 Smith, J. 55

Page 47

Alternatively,

 join -o 1.2 1.1 2.2 class-list marks-list > meeting-list

would have resulted in the student-number (first field of the first file)
being included between the name and mark.

Here, this one line accomplishes the whole task. Repetitive tasks do
not lend themselves to an interactive user interface; the tedium of repeat-
edly typing in commands becomes tiresome. Any one command or set
of commands you would normally type in interactively can be placed in
a file, called a shell-script, and submitted for execution. The solution to
SCENARIO 1 as a shell script would look like this (saved in a file
perhaps called ‘make-marks’):

 #!/bin/sh
 cut '-d ' -f2 < marks-list > marks
 cut '-d ' -f2 < class-list > names
 pr -m names marks > meeting

There are two ways to execute this file, it can be given to a shell
from stdin. At the prompt type:

 sh < make-marks
or it can be given execute permission:

 chmod a+x make-marks
and executed by typing in the file-name (‘make-marks’) at the shell-
prompt.

UNIX was designed to be greater than the sum of its parts. Simple
tools used as building blocks, with pipes acting as the “glue,” create ever
more sophisticated tools. The UNIX user, using these tools can become
a toolmaker and create tools customized for his or her own purposes.

Note:
The key to finding the correct tool for the task at hand is judicious use of the man

-k (a.k.a apropos) followed by a keyword (refer to SOLUTION 1). Remember that

Page 48

UNIX has been evolving for over a decade and many tasks we encounter can be
classified into a range for which there already exists a tool (and one that has been
thoroughly debugged).

The paradigm of simple tools used to build sophisticated tools does not preclude
the creation of sophisticated tools as an end unto themselves. perl (Pathologically
Eclectic Rubbish Lister), written by Larry Wall, is a tool that combines the power of
the interactive shell (sh) and the C programming language. It has established itself as
a very powerful tool that can at times be used as a replacement for creating tools that
would otherwise require writing a C program.

Using UNIX Tools to Design A Tool
for A Researcher’s Toolkit

[Editor’s Note: The following description of some of the processes of
creating a tool for a researcher’s toolkit is intended not as a tutorial or
a how-to article, but rather to demonstrate how UNIX tools can be used
to design and create new tools which can be customized to one’s own
needs and purposes. It is our hope that this article will demonstrate why
the UNIX programming environment is so important. The book The
UNIX Programming Environment, by Rob Pike and Brian W Kernighan
(NJ, 1984) is a very fine introduction to the power of UNIX tools.]

The following describes the creation of a UNIX tool. This tool is the
first of several planned as part of a Researcher’s Toolkit, a UNIX based
toolkit for researchers to be able to handle and manipulate their data.
The most important aspect of this toolkit is that it is intended to help
researcher’s do intellectual work that will enhance their research using
these UNIX tools.

I. Form of Files
In the process of working on research on the history and develop-

ment of UNIX, I felt it would be valuable to have research tools using
UNIX to help with my research. I decided to see if I could create tools
that would not only help me with tasks that might be drudgery, but more
importantly, tools that would give me a way to have the computer help

Page 49

me as an intellectual aid.
I wanted the computer to be able to help me to search through files

to be able to see which files contained various ideas and then to provide
me with the context of the ideas.

A) To do this I had to first create a standard format for the files I
typed in. Modeling what I did on what I learned from working through
The UNIX Programming Environment I named my files consistently,
typing notes from each of my sources into individual files which I
named:
 unixtool.000
 unixtool.001
 unixtool.002
 .
 .
 .
 unixtool.041
 unixtool.042
 unixtool.043

B) Each of the files contained the name of the file as the top line of
the file and then the name of the source, author, publication information
and then the quotes I typed with page references.

For example, if I type $ cat unixtool.001 I will get:
unixtool.001

from “The Bell System Technical Journal,” July-August 1978, vol
57, no 6, pt 2

UNIX Time-Sharing System:
Preface by T. H. Crowley
pg. 1897-1898

 “Programming activities under way at Bell Laboratories cover a
very broad spectrum. They range from basic research on ...”

Page 50

II. Form that the files took in my directory
Following is the form the files took in my directory.

$ ls -als unixtool.0*

3 -rw-r--r-- 1 ronda users 2159 Jan 31 11:54 unixtool.000
3 -rw-r--r-- 1 ronda users 2481 Jan 26 22:48 unixtool.001
7 -rw-r--r-- 1 ronda users 7036 Jan 26 22:49 unixtool.002
 .
 .
 .
8 -rw-r--r-- 1 ronda users 7964 Mar 12 02:05 unixtool.045
8 -rw-r--r-- 1 ronda users 7985 Mar 12 02:37 unixtool.046
6 -rw-r--r-- 1 ronda users 5938 Mar 12 13:16 unixtool.047

III. Then I used a series of UNIX tools to search the files.
The first tool was a tool to search for a keyword (expression) in my

files using the UNIX tool grep. I could type from the keyboard:

$ grep -n keyword unixtool.0*

I got a listing of filenames, the line number of the keyword, and one
line (with the keyword in it), separated by colons. I then made this into
a shell command which I could enter from the command line and enter
the keyword by using $1. The command was named nu.grep

$ cat nu-grep
grep -n $1 unixtool.0*

[Note: I use cat to show this one line file. The file could be created with
vi or other editor or with cat.]

I made certain the permissions on the file nu.grep were set so I
could execute the file.

$ chmod 755 nu.grep

Page 51

Thus typing from the keyboard the command nu.grep and a key-
word (e.g. CTSS), I got a listing of the filename, the line number of the
keyword, and one line with the keyword in it, separated by colons.

$ nu.grep CTSS

unixtool.004:14:CTSS system. This claim is intended as a
complement to both UNIX
unixtool.004:15:and CTSS. Today, more than fifteen years
after CTSS was born, few
 .
 .
 .
unixtool.014:367: in turn been inspired by J. Saltzer's Runoff
Program on CTSS

IV. The Value of Making a Tool
I found that the tool I was creating would help me to identify both

the file name, the line number of the keyword and the line containing the
keyword. This was an intellectual aid as it helped me to identify some-
thing that I might be interested in pursuing further or something that was
interesting that I might not have realized.

For example, I found there were ideas highlighted through this
process that were helpful for me to focus on in doing my research.

V. Finding the Context of the Reference
Next I wanted to be able to look up the context of the references that

I found in the keyword search. I found I could make a tool using sed
which would give me the context of the keyword. The sed tool I used
was:

sed -n 'x1,x2p' filename

After locating the following line with the grep tool:
unixtool.014:367: in turn been inspired by J. Saltzer's
Runoff Program on CTSS

Page 52

I decided that I would look at five lines above and five lines below the
line number of the keyword. The line number of the keyword was 367.
Thus my sed tool was:
$ sed -n '367-5,367+5p' unixtool.041

VI - A Tool to Automate the Context Output
I wanted a tool that would automate this process by giving me first

a list of the references from all the files with the keyword in it and then
a printout containing the ten line context of the keyword.

I wanted to print the context of the keyword or pattern.

VII. grep to list the fields, awk to read them off, sed to do context
To get the context of the keyword, awk was used to read off the

fields of the listing produced by grep. Then I used sed.
For example, making a new shell script nu.grep2:

$ cat nu.grep2
grep -n $1 unixtool.0* | awk -f nu.awk | sh

and a shell script nu.awk
$ cat nu.awk
 BEGIN {FS=":" }
 {print "echo", $1, $2 "------------------"}
 $2 > 5 {print "sed -n ' " $2-5 "," $2+5 "p' ",$1}
 $2 < 6 && $2 > 1 {print "sed -n ' " 2 "," $2+5"p' ", $1}
 {print "echo =============================="}

(Make sure permissions are set on both nu.grep2 and nu.awk so that
files can be executed.)
$ chmod 755 nu.grep2
$ chmod 755 nu.awk

Using the shell script nu.grep2 with a keyword:
$ nu.grep2 CTSS

produced contextual references, including the following, for example:
 unixtool.004 14------------------

Page 53

“In most ways, UNIX is a very conservative system. Only a handful
of its ideas are genuinely new. In fact, a good case can be made that it
is in essence a modern implementation of MIT’s CTSS system. This
claim is intended as a compliment to both UNIX and CTSS. Today,
more than fifteen years after CTSS was born, few of the interactive
systems we know of are superior to it in ease of use; many are inferior
in basic design.”
 from D. M. Ritchie, “A Retrospective,” from
 “The Bell System Technical Journal,” vol 57,
 No. 6, part 2, July-August 1978, p. 1948.

VIII. Following is the resulting tool which I called signif.
[Note: Make one shell script for signif, and another script for contex.]
 $ cat signif
 #!/bin/sh
 #signif
 #make sure that there are at least two args to the command

 case $# in
 0) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
 1) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
 esac

 if egrep -n $* /dev/null
 then
 contex $*
 else
 echo Sorry
 fi

 $ cat contex
 #!/bin/sh
 #contex
 awkfile=/tmp/nu.awk.$$
 case $# in
 0) echo usage:;

Page 54

 echo " " 'basename $0' keyphrase files
 exit ;;
 1) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
 esac

cat>${awkfile} <<END_AWK_SCRIPT
 BEGIN {FS=":" }
 {print "echo -n", \$1 ":" \$2 ":" }
 {print "sed -n ' " \$2 "p' ",\$1}
 {print "echo",":"}
 \$2 > 5 {print "sed -n ' " \$2-5 "," \$2+5"p' ",\$1}
 \$2 < 6 && \$2 > 1 {print "sed -n ' "2"," \$2+5 "p' ", \$1}
 {print "echo =============================="}

END_AWK_SCRIPT
 #echo executing:
 #echo " egrep -n ${key} $* | awk -f ${awkfile} | sh"
 egrep -n $* /dev/null | awk -f ${awkfile} | sh
 /bin/rm -f ${awkfile}

[Editor’s Note: make sure you make the shell scripts executable.]

IX. Other versions of the tool:
A tool to list the whole file:

signif-w
#!/bin/sh
#outputs whole files which include the keyword
awkfile=/tmp/nu.awk2.$$
case $# in
 0) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
 1) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
esac

cat>${awkfile} <<END_AWK_SCRIPT
 BEGIN {FS=":"}
 {print "echo ",\$1 ":" \$2":" \$3}

Page 55

 {print "cat ", \$1}
 {print "echo =================="}

END_AWK_SCRIPT
echo executing:
echo " egrep -n ${key} $* | awk -f ${awkfile} | sh"
egrep -n $* | awk -f ${awkfile} | sh

/bin/rm -f ${awkfile}

A tool to list just one line references:
signif-l
#!/bin/sh
make sure that there are at least two args to the command
case $# in
 0) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
 1) echo usage:;
 echo " " 'basename $0' keyphrase files
 exit ;;
esac
if egrep -n $* /dev/null
then
 echo OK
else
 echo Sorry
fi

Example: $ signif -l tool unixtool.0*

[Tool design and creation was done as part of an independent study with
Dr. Narasimhamurthi at the University of Michigan Dearborn, in Winter
1994.]

Page 56

C Program
(To grab e-mail addresses from files)

[Editor’s Note: The following K&R (Kernighan and Ritchie) C program
was submitted by a beginner programmer. He called the compiled ver-
sion findadd and used it in the form:
 $ findadd < file >> addresses]
-------------cut here---------------
/* C program to grab E-mail addresses containing '@' */
#include <stdlib.h>
#include <stdio.h>
#define ADDMAX 100
/* maximum address expected 99 characters */

main()
{
 int c;
 char add[ADDMAX], *find_add();

 while (find_add(add) != NULL) {
 printf("%s\n", add);
 }
 exit(0);
}

char *find_add(add)
char add[];
{
 int c, i, flag;
 c = getchar();
 while (c != EOF)
 {
 /* skip whitespace */
 while (c == ' ' || c == '\t' || c == '\n')
 c = getchar();
 flag = 0;
 i=0;
 while (c != ' ' && c != '\t' && c != '\n' && c != EOF)
 {
 add[i++] = c;
 /* '@' occurs in most e-mail addresses */
 if (c == '@')

Page 57

 flag = 1;
 c = getchar();
 }
/* \0 ends the string */
 add[i] = '\0';
/*check if string is an address*/
 if (flag == 1)
 return(add);
 }
 return(NULL);
}
-------------cut here---------------

New Net Book

In honor of the 25th Anniversary of the ARPAnet and of the UNIX
operating system, and the 15th Anniversary of Usenet News, I am proud
to announce a net-book. This net-book provides some of the historical
perspective and social context needed to understand the advance repre-
sented by the global telecommunications network. This net-book is for
those who want to contribute to the care and nurture of the Net.

The Book’s title is: The Netizens and the Wonderful World of the
Net: An Anthology.

Any comments on the book would be welcome, as it is currently in
draft form. We are making it available on-line as we feel it will be
helpful for people, and your comments will help us to make the book
more valuable.

In addition, it would be worthwhile to have the book published in
a printed edition. Any suggestions towards this would be appreciated.

A draft is now available via anonymous ftp at: wuarchive.wustl.edu
in the directory: /doc/misc/acn/netbook

The on-line book is also available to browse via gopher on the
gopher server: gopher.cic.net in the directory (or by going through the
menus): e-serials/alphabetic/a/amateur-computerist/netbook My
.gopherrc entry looks like this:

Page 58

Name=Netizen’s Netbook
Type=1
Port=70
Path=1/e-serials/alphabetic/a/ amateur-computerist/netbook
Host=gopher.cic.net

URL: (For WWW browsers like Mosaic, lynx, cello, etc.)

gopher://gopher.cic.net/11/ e-serials/alphabetic/a/
 amateur-computerist/netbook

or from my homepage at: http://www.cc.columbia.edu/~hauben/
home.html under the link to its title.

Click <a href="http://www.cc. columbia.edu/~hauben/home.
 html">here

-Michael Hauben
hauben@columbia.edu

The Linux Movement
by Phil Hughes (phil@fylz.com)

[Editor’s note: Linux is a non-commercial version of UNIX being cre-
ated by volunteer developers. The Amateur Computerist welcomes
articles about the different flavors of UNIX that might be available to
amateur computerists.

We want to point out that we differ with the encouragement in the
following article of a commercial future for Linux. Our experience is
that commercial interests try to freeze rather than develop what they are
making money off of.]

With over 13 years of experience with the UNIX operating system,
I was skeptical when I read that some college student had implemented

Page 59

mailto:hauben@columbia.edu

a “free UNIX” called Linux. But I felt a duty to verify that Linux was
just a toy. Now, with over a year of Linux experience, I want you to
know that Linux is not a toy, it offers some advantages over commercial
UNIX implementations and it has a sense of community that you won’t
find with other software.

Linux is a UNIX-like operating system designed specifically to run
on Intel 80386 and higher processors. It offers virtually all the function-
ality of other PC-based UNIX systems along with one amazing side
benefit – it’s free. To understand why, you need to look at its history and
its creator.

The Linux kernel was developed by a college student at the Univer-
sity of Helsinki named Linus Torvalds. Linus took a C and UNIX class
in the fall of 1990 and got really interested in UNIX. He bought Andy
Tanenbaum’s book on Minix, bought a 386 laptop and, in early 1991, in-
stalled Minix on that system.

Linus quickly figured out that Minix wasn’t what he wanted and
started developing his own UNIX-like kernel. By using a C compiler and
other utilities developed by the Free Software Foundation, Linus was
able to put together a rudimentary UNIX-like system by January, 1992.
Since that time the Linux effort has grown from the work of Linus
Torvalds and a few friends into an international movement involving
hundreds and possibly thousands of developers and tens of thousands of
users.

What makes this effort unique is that all the development is done in
public view, for free by people spread all over the world. This sort of
effort has been possible because these people use the Internet to ex-
change information. Cooperation has been on such a level that when
someone found out that Linus was still making payments on his laptop,
they decided to take up a collection – over the Internet, of course – to
raise money to pay off his system.

The Development Effort
The best way to describe Linux development is a successful imple-

mentation of Communism. No, this isn’t a political statement. The
dictionary definition of Communism is “from each according to his
ability, to each according to his need.” This is what is happening with

Page 60

Linux. High-powered software engineers and programmers from differ-
ent backgrounds in different countries are chipping in to write the parts
of Linux they understand – from Ethernet card drivers to documentation.
The result is a large-scale, commercial quality effort with no staff costs,
no office costs and no marketing or distribution costs.

Because development is done in the open anyone can request a
feature or point out a bug and the developer can directly respond. The
result is that new software is being written at breakneck speed and bugs
are being fixed in a matter of days instead of months or possibly years.
 For example, last year someone posted a message to Usenet asking if
Linux supported a floptical disk. (This is a disk that has a SCSI interface
and supports a 20MB removable disk the size of a 3.5" floppy.) Within
hours a followup message was posted that pointed out that such disk
drives needed to be sent a special initialization sequence. The next
followup was from the SCSI driver developer asking if anyone knew
what that special sequence was. A couple of days later the developer
posted a message pointing out that he had added the required code to the
SCSI driver.

What do you get with Linux?
This is where most dyed-in-the-wool UNIX users expect Linux to

fall short. But, it doesn’t. Linux includes all the networking, develop-
ment, graphics and device support of virtually any commercial version
of UNIX and then some.

The reality is that you can get a complete UNIX-like system includ-
ing everything you would expect in a commercial package with all the
extras including editors, compilers, development software, text process-
ing systems, shells, database systems, electronic mail and news, net-
working, communications programs, the X-Windows graphics system
and even an assortment of games for close to nothing. Virtually all of the
standard UNIX utilities come from the GNU project, an effort of the
Free Software Foundation.

There are various vendors that package the Linux kernel with other
freely re-distributable software. Packages vary in size from seven floppy
disks to a CD-ROM chock-full of software. The prices of these packages
vary from free to around $50 and are, themselves, freely re-distributable.

Page 61

Is it Reliable?
It depends on who you ask. Opinions vary all over the map. But I

can explain why. People who try every new Alpha release will have
problems with reliability. And, unlike commercial ventures where bugs
tend to be hidden behind marketing hype, everyone reading the Linux
newsgroups on the Internet quickly finds out about any bugs. Rather
than justify, let me just speak from personal experience.

In my “home office” which is now the editorial office for Linux
Journal as well as for my consulting business, I have had a UNIX-based
system for about 4 years. Up until last year it was based on AT&T
System V, Release 3.2. It was running on a 386 system and proved to be
reliable. Only a couple of bugs could cause an occasional crash.

Last year I replaced this system with a Linux system because I
wanted support for long file names and larger disks. And, I wanted
Network File System (NFS) and this would cost hundreds of dollars for
my System V system. We now have three computers networked to-
gether. Two computers run Linux all the time and one runs either Linux
or MS-DOS. They all talk over Ethernet. NFS works fine.

The only reason I have had to reboot any of the systems is because
of a bug in the serial I/O driver which causes a port to hang occasionally
under heavy use. (The system has three modems on it, talking to them
at 38,400 bps.) This bug was first noticed a couple of weeks before a
patch came out to correct it. I just haven’t had the time to install the
patch.

This bug is very similar to one that one of my clients has with their
“commercial” UNIX system. The difference is that the two vendors in-
volved (the communications board manufacturer and the UNIX vendor)
both deny that they could possibly have such a bug. So it still exists in
their “commercial” system after three years, two operating system
upgrades and countless communications board software releases.

Is a Commercial Future Possible for Linux?
The short answer is yes. Even though Linux is free, it will make lots

of money for lots of people. Here is why.
First, to run Linux you need a computer. Offered the chance to have

a real UNIX-like operating system at home for free many grade a current

Page 62

system to support it. Thus, hardware will be purchased because Linux
is available.

Second, some companies will elect to use multiple Linux systems
as an alternative to either a single computer and dumb terminals or a
single computer and X-terminals. And, in some cases, Linux will replace
more expensive workstations.

An example is one company where I have consulted. Their initial
requirements were fairly simple. Three to five local users plus a couple
of modem lines. The users would either be using a database or using
standard UNIX editing and publishing tools. The solution was also fairly
simple and consisted of a 386-based system running SCO Xenix and a
few dumb terminals.

But, today, their requirements have grown. They need more horse-
power and they need graphics capabilities at two of the desktops. To
meet these requirements with traditional answers would require the
purchase of at least two more copies of the UNIX or Xenix operating
system, networking software, and X-windows software as well as the
additional hardware. Such a purchase is beyond the budget of the com-
pany so they continue to limp along with their current configuration.

If, instead, Linux is offered as an alternative, a solution can be
found. Linux is freely copyable so the operating system cost is almost
zero. And Linux includes both the needed networking software (NFS
and TCP/IP) and X-windows. This means that other than having to
purchase an upgrade for Xenix to add the networking, all the upgrade
budget can be reserved for the purchase of the necessary hardware.

The difference here is that with the Linux solution, the customer got
what they needed – a system up-grade – and the computer industry, as
a whole, came out ahead because new equipment was, in fact,
purchased. Thus, what is called “free software” made money for some
and solved the problems of others.

Finally, with a free operating system, some software developers will
port their applications to this new platform making it possible for people
to purchase the application. Without the free operating system the com-
puterized solution could have been out of reach financially.

The Future
I see an interesting future for Linux. First, it will remain a hacker’s

Page 63

system for some. They will get the source code, play with it and, in the
process, learn a lot about computers and operating systems. For them,
whether it is an individual effort or through a school, Linux will be the
tool needed to pave the way into a successful career in computing.

Some of these hackers and some computer professionals will see
Linux as a tool to develop a solution that otherwise couldn’t be done.
Interfacing Linux to a voice mail board or any other special hardware is
simple. If the hardware fits in an ISA or EISA-bus slot and you have
hardware documentation you can write a driver and integrate it into the
Linux system. In fact, this is happening every day with new sound
boards, new SCSI disk controllers and new Ethernet cards. Other hack-
ers will probably become computer consultants.

Having all of Linux available to anyone means that you could do
serious consulting in your own home town instead of having to move to
the home of the developers of the software.

Linux can and has replaced X terminals. An X terminal is a graph-
ical terminal that is designed to talk to a host computer running as an
X-windows server. As Linux comes with the necessary X client software
as well as the necessary networking code (TCP/IP) Linux can easily do
the task. Thus an expensive, special-purpose terminal can be replaced
with common, inexpensive PC hardware.

Linux includes both TCP/IP networking and the Network File
System. This means Linux can offer connectivity and server capabilities
to other systems at a very low cost. For example, a PC running DOS
and/or MS-Windows can be cheaply added to a network of Linux (and
UNIX) systems. This is because it is only necessary to add an ethernet
card and the networking software (such as Sun’s PC-NFS) to the single
PC. There is no networking cost associated with the Linux systems.

Development continues on a program called Wine. Wine is software
that will allow MS-Windows based applications to run on Linux sys-
tems. Rather than either emulate MS-Windows or just allow Linux to act
as a platform for running MS-Windows, Wine runs MS-Windows appli-
cations directly by translating calls from the applications for
MS-Windows services into their X-windows equivalents. While Wine
is still being developed, its future looks promising. Because of its de-
sign, people will not have to purchase MS-Windows to use it. Further,

Page 64

it has all the potential to run as fast, or faster, than MS-Windows on the
same computer hardware.

Interested in connecting to the Internet? Many people have Internet
access by using their PC as a terminal and dialing up a local service
provider. [A growing number of freenets are available without charge –
ed] Many of these same service providers offer both uucp and SLIP
connections. [Also there are free uucp connections available in some
areas – ed] Linux include both uucp, the standard UNIX-to-UNIX com-
munications program and SLIP, a TCP/IP-like protocol designed to
allow connections over dial-up serial lines. Thus, with a Linux system
you can be one step closer to the Internet by establishing a uucp account.
Or you could connect your Linux machine directly to the Internet by
establishing a SLIP account.

For the casual user who wants to know more about multi-user
systems or for the mainframe COBOL programmer who has heard about
UNIX and C and wants to get his or her feet wet, Linux offers a virtually
no-cost way to test the waters. In computing, the way to learn something
new is to give it a try. For anyone who currently has a reasonable sized
PC, Linux can be installed on a partition on an existing disk and you
have your own personal UNIX (Linux) system to use as a learning tool.

Where does this lead? Does Linux replace every personal computer
and every UNIX system in the world? In a word, no. But it does offer an
alternative to other commercial systems, a stepping stone for some and
a cost effective solution for many more.

Copyright 1994, Phil Hughes. Parts of this article appeared in the March,
1994 issue of Puget Sound Computer User.

Page 65

The Ten Commandments for
C Programmers

 (Annotated Edition)
by Henry Spencer

[Editor’s Note: One of the important advances of UNIX was when it was
recoded in C and thus became portable (not dependent on any particular
computer hardware). Thus it seems appropriate to include Henry
Spencer’s “Ten Commandments” article on C as part of the commemo-
ration of UNIX.]

1. Thou shalt run lint frequently and study its pronouncements with
care, for verily its perception and judgement oft exceed thine.

This is still wise counsel, although many modern compilers
search out many of the same sins, and there are often problems
with lint being aged and infirm, or unavailable in strange lands.
There are other tools, such as Saber C, useful to similar ends.
“Frequently” means thou shouldst draw thy daily guidance
from it, rather than hoping thy code will achieve lint’s blessing
by a sudden act of repentance at the last minute. De-linting a
program which has never been linted before is often a cleaning
of the stables such as thou wouldst not wish on thy worst ene-
mies. Some observe, also, that careful heed to the words of lint
can be quite helpful in debugging.
“Study” doth not mean mindless zeal to eradicate every byte of
lint output for — if no other reason, because thou just canst not
shut it up about some things — but that thou should know the
cause of its unhappiness and understand what worrisome sign
it tries to speak of.

Page 66

2. Thou shalt not follow the NULL pointer, for chaos and madness
await thee at its end.

Clearly the holy scriptures were mis-transcribed here, as the
words should have been “null pointer,” to minimize confu-
sion between the concept of null pointers and the macro
NULL (of which more anon). Otherwise, the meaning is
plain. A null pointer points to regions filled with dragons,
demons, core dumps, and numberless other foul creatures, all
of which delight in frolicking in thy program if thou disturb
their sleep. A null pointer doth not point to a 0 of any type,
despite some blasphemous old code which impiously assumes
this.

3. Thou shalt cast all function arguments to the expected type if
they are not of that type already, even when thou art convinced
that this is unnecessary, lest they take cruel vengeance upon thee
when thou least expect it.

A programmer should understand the type structure of his
language, lest great misfortune befall him.
Contrary to the heresies espoused by some of the dwellers on
the Western Shore, ‘int’ and ‘long’ are not the same type. The
moment of their equivalence in size and representation is
short, and the agony that awaits believers in their
interchangeability shall last forever and ever once 64-bit
machines become common.
Also, contrary to the beliefs common among the more back-
ward inhabitants of the Polluted Eastern Marshes, ‘NULL’
does not have a pointer type, and must be cast to the correct
type whenever it is used as a function argument.
(The words of the prophet ANSI, which permit NULL to be
defined as having the type ‘void *,’ are oft taken out of con-
text and misunderstood. The prophet was granting a special
dispensation for use in cases of great hardship in wild lands.
Verily, a righteous program must make its own way through

Page 67

the Thicket Of Types without lazily relying on this
rarely-available dispensation to solve all its problems. In any
event, the great deity dmr who created C hath wisely en-
dowed it with many types of pointers, not just one, and thus
it would still be necessary to convert the prophet’s NULL to
the desired type.)
It may be thought that the radical new blessing of “proto-
types” might eliminate the need for caution about argument
types. Not so, brethren. Firstly, when confronted with the
twisted strangeness of variable numbers of arguments, the
problem returns...and he who has not kept his faith strong by
repeated practice shall surely fall to this subtle trap. Secondly,
the wise men have observed that reliance on prototypes doth
open many doors to strange errors, and some indeed had
hoped that prototypes would be decreed for purposes of error
checking but would not cause implicit conversions. Lastly,
reliance on prototypes causeth great difficulty in the Real
World today, when many cling to the old ways and the old
compilers out of desire or necessity, and no man knoweth
what machine his code may be asked to run on tomorrow.

4. If thy header files fail to declare the return types of thy library
functions, thou shalt declare them thyself with the most meticulous
care, lest grievous harm befall thy program.

The prophet Ansi, in her wisdom, hath added that thou
shouldst also scourge thy Suppliers, and demand on pain of
excommunication that they produce header files that declare
their library functions. For truly, only they know the precise
form of the incantation appropriate to invoking their magic
in the optimal way.
The prophet hath also commented that it is unwise, and leads
one into the pits of damnation and subtle bugs, to attempt to
declare such functions thyself when thy header files do the
job right.

Page 68

5. Thou shalt check the array bounds of all strings (indeed, all
arrays), for surely where thou typest “foo” someone someday shall
type “supercalifragilisticexpialidocious.”

As demonstrated by the deeds of the Great Worm, a conse-
quence of this commandment is that robust production soft-
ware should never make use of gets(), for it is truly a tool of
the Devil. Thy interfaces should always inform thy servants
of the bounds of thy arrays, and servants who spurn such
advice or quietly fail to follow it should be dispatched forth-
with to the Land Of rm, where they can do no further harm to
thee.

6. If a function be advertised to return an error code in the event
of difficulties, thou shalt check for that code, yea, even though the
checks triple the size of thy code and produce aches in thy typing
fingers, for if thou thinkest “it cannot happen to me,” the gods
shall surely punish thee for thy arrogance.

All true believers doth wish for a better error-handling mech-
anism, for explicit checks of return codes are tiresome in the
extreme and the temptation to omit them is great. But until
the far-off day of deliverance cometh, one must walk the long
and winding road with patience and care, for thy Vendor, thy
Machine, and thy Software delight in surprises and think
nothing of producing subtly meaningless results on the day
before thy Thesis Oral or thy Big Pitch To The Client.
Occasionally, as with the ferror() feature of stdio, it is possi-
ble to defer error checking until the end when a cumulative
result can be tested, and this often produceth code which is
shorter and clearer. Also, even the most zealous believer
should exercise some judgement when dealing with functions
whose failure is totally uninteresting ... but beware, for the
cast to void is a two-edged sword that sheddeth thine own
blood without remorse.

Page 69

7. Thou shalt study thy libraries and strive not to re-invent them
without cause, that thy code may be short and readable and thy
days pleasant and productive.

Numberless are the unwashed heathen who scorn their libraries on
various silly and spurious grounds, such as blind worship of the
Little Tin God (also known as “Efficiency”). While it is true that
some features of the C libraries were ill-advised, by and large it is
better and cheaper to use the works of others than to persist in re-
-inventing the square wheel. But thou should take the greatest of
care to understand what thy libraries promise, and what they do not,
lest thou rely on facilities that may vanish from under thy feet in
future.

8. Thou shalt make thy program’s purpose and structure clear to
thy fellow man by using the One True Brace Style, even if thou
likest it not, for thy creativity is better used in solving problems
than in creating beautiful new impediments to understanding.

These words, alas, have caused some uncertainty among the nov-
ices and the converts, who knoweth not the ancient wisdoms. The
One True Brace Style referred to is that demonstrated in the writ-
ings of the First Prophets, Kernighan and Ritchie. Often and again
it is criticized by the ignorant as hard to use, when in truth it is
merely somewhat difficult to learn, and thereafter is wonderfully
clear and obvious, if perhaps a bit sensitive to mistakes.
While thou might think that thine own ideas of brace style lead to
clearer programs, thy successors will not thank thee for it, but rather
shall revile thy works and curse thy name, and word of this might
get to thy next employer. Many customs in this life persist because
they ease friction and promote productivity as a result of universal
agreement, and whether they are precisely the optimal choices is
much less important. So it is with brace style.
As a lamentable side issue, there has been some unrest from the
fanatics of the Pronoun Gestapo over the use of the word “man” in
this Commandment, for they believe that great efforts and loud
shouting devoted to the ritual purification of the language will
somehow redound to the benefit of the downtrodden (whose real

Page 70

and grievous woes tendeth to get lost amidst all that thunder and fury).
When preaching the gospel to the narrow of mind and short of temper, the
word “creature” may be substituted as a suitable pseudo-Biblical term free
of the taint of Political Incorrectness.

9. Thy external identifiers shall be unique in the first six charac-
ters, though this harsh discipline be irksome and the years of its
necessity stretch before thee seemingly without end, lest thou tear
thy hair out and go mad on that fateful day when thou desirest to
make thy program run on an old system.

Though some hasty zealots cry “not so; the Millennium is come, and
this saying is obsolete and no longer need be supported,” verily there
be many, many ancient systems in the world, and it is the decree of
the dreaded god Murphy that thy next employment just might be on
one. While thou sleepest, he plotteth against thee. Awake and take
care.
It is, note carefully, not necessary that thy identifiers be limited to
a length of six characters. The only requirement that the holy words
place upon thee is uniqueness within the first six. This often is not
so hard as the belittlers claimeth.

10. Thou shalt foreswear, renounce, and abjure the vile heresy
which claimeth that “All the world’s a VAX,” and have no com-
merce with the benighted heathens who cling to this barbarous
belief, that the days of thy program may be long even though the
days of thy current machine be short.

This particular heresy bids fair to be replaced by “All the world’s
a Sun” or “All the world’s a 386” (this latter being a particularly
revolting invention of Satan), but the words apply to all such with-
out limitation. Beware, in particular, of the subtle and terrible “All
the world’s a 32-bit machine,” which is almost true today but shall
cease to be so before thy resume grows too much longer.

Page 71

May Day in the Morning
by Floyd Hoke-Miller

[Editor’s Note: the promise of UNIX and of automation is the promise
of a shorter workday for all. Since May Day is the holiday celebrating
the 200 year struggle to shorten the working day, we include this poem
in honor of May Day in this special issue.]

Awake my fellow workers, it’s May Day and it’s spring;
Let’s celebrate its meaning and what our might could bring.

Let not your hearts be troubled, you’re master of your fate;
So plan to use the things you’ve made and paradise create.

Clear the cobwebs from your mind the master class has spun
Through centuries of directing all the things you’ve done.

Arise you sons of toil and brush your brows of sweat
And look toward the horizon of things the OBU would get.

See how the world has prospered and who enjoys its good
Then cross your hearts forever to form one brotherhood.

[Note: The OBU (pronounced Oh Be You) is the One Big Union that
the Industrial Workers of the World (the IWW or Wobblies) seek as the
proper workers’ organization.]

Some of the more than 500 poems that Floyd Hoke-Miller wrote
are collected in the book A Laborer Looks at Life, Then and Now,
Poems from the Shop Floor, Flint, Mi, 1984.

Page 72

What is the Free Software Foundation?

[Editor’s Note: The following is reprinted from GNU’s Bulletin, June,
1993.]

The Free Software Foundation is dedicated to eliminating restric-
tion on people’s abilities and rights to copy, redistribute, understand,
and modify computer programs. We do this by promoting the develop-
ment and use of free software in all areas of computer use. Specifically,
we are putting together a complete integrated software system named
“GNU” (GNU’S Not UNIX) (pronounced “guh-new”) that will be
upwardly compatible with UNIX. Most parts of this system are already
working, and we are distributing them now.

The word “free” in our name pertains to freedom, not price. You
may or may not pay money to get GNU software. Either way, you have
two specific freedoms once you have the software: first, the freedom to
copy the program and give it away to your friends and co-workers; and
second, the freedom to change the program as you wish, by having full
access to source code. Furthermore, you can study the source and learn
how such programs are written. You may then be able to port it, im-
prove it and share your changes with others. If you redistribute GNU
software, you may charge a fee for the physical act of transferring a
copy, or you may give away copies.

Other organizations distribute whatever free software happens to
be available. By contrast, the Free Software Foundation concentrates
on development of new free software, working towards a GNU system
complete enough to eliminate the need for you to purchase a proprietary
system.

WHAT IS COPYLEFT?
The simplest way to make a program free is to put it in the public

domain, un-copyrighted. But this allows anyone to copyright and re-
strict its use against the author’s wishes, thus denying others the right
to access and freely redistribute it. This completely perverts the original
intent.

Page 73

To prevent this, we copyright our software in a novel manner.
Typical software companies use copyrights to take away your free-
doms. We use the copyleft to preserve them. It is a legal instrument that
requires those who pass on the program to include the right to further
redistribute it, and to see and change the code; the code and the right
become legally inseparable.

The copyleft used by the GNU Project is made from a combination
of a regular copyright notice and the GNU General Public License
(GPL). The GPL is a copying license which basically says that you
have the freedoms discussed above. An alternate form, the GNU Li-
brary General Public License (LGPL), applies to certain GNU Librar-
ies. This license permits linking the libraries into proprietary execut-
ables under certain conditions. The appropriate license is included in all
GNU source code distributions and in many of our manuals. We will
also send you a printed copy upon request.

Free Software Foundation, Inc.
675 Massachusetts. Ave.
Cambridge, MA 02139 USA
E-mail: gnu@prep.ai.mit.edu

Page 74

EDITORIAL STAFF
Ronda Hauben
William Rohler

Norman O. Thompson
Michael Hauben (1973-2001)

Jay Hauben
The Amateur Computerist invites submissions.

Articles can be submitted via e-mail: jrh@ais.org
Permission is given to reprint articles from this issue in a
non profit publication provided credit is given, with name
of author and source of article cited.

The opinions expressed in articles are those of their
authors and not necessarily the opinions of the
Amateur Computerist newsletter. We welcome sub-

missions from a spectrum of viewpoints.

 ELECTRONIC EDITION
ACN Webpage:

http://www.ais.org/~jrh/acn/
All issues of the Amateur Computerist are on-line.

Back issues of the Amateur Computerist are available at:
http://www.ais.org/~jrh/acn/Back_Issues/

 All issues can be accessed from the Index at:
 http://www.ais.org/~jrh/acn/NewIndex.pdf

Page 75

file:///|//jrh@ais.org
http://www.ais.org/~jrh/acn/
http://www.ais.org/~jrh/acn/Back_Issues/
http://www.ais.org/~jrh/acn/NewIndex.pdf

